Mol Plant Microbe Interact
October 2015
The necrotrophic fungus Pyrenophora tritici-repentis is responsible for the disease tan spot of wheat. Ptr ToxB (ToxB), a proteinaceous host-selective toxin, is one of the effectors secreted by P. tritici-repentis.
View Article and Find Full Text PDFPyrenophora tritici-repentis, the causal agent of tan spot disease of wheat, mediates disease by the production of host-selective toxins (HST). The known toxins are recognized in an 'inverse' gene-for-gene manner, where each is perceived by the product of a unique locus in the host and recognition leads to disease susceptibility. Given the importance of HSTs in disease development, we would predict that the loss of any of these major pathogenicity factors would result in reduced virulence and disease development.
View Article and Find Full Text PDFPyrenophora tritici-repentis Ptr ToxB (ToxB) is a proteinaceous host-selective toxin produced by Pyrenophora tritici-repentis (P. tritici-repentis), a plant pathogenic fungus that causes the disease tan spot of wheat. One feature that distinguishes ToxB from other host-selective toxins is that it has naturally occurring homologs in non-pathogenic P.
View Article and Find Full Text PDFGraphium sp. (ATCC 58400), a filamentous fungus, is one of the few eukaryotes that grows on short-chain alkanes and ethers. In this study, we investigated the genetic underpinnings that enable this fungus to catalyze the first step in the alkane and ether oxidation pathway.
View Article and Find Full Text PDFThe genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species.
View Article and Find Full Text PDFG3 (Bethesda)
January 2013
Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P.
View Article and Find Full Text PDFPyrenophora tritici-repentis (Ptr), a necrotrophic fungus and the causal agent of tan spot of wheat, produces one or a combination of host-selective toxins (HSTs) necessary for disease development. The two most studied toxins produced by Ptr, Ptr ToxA (ToxA) and Ptr ToxB (ToxB), are proteins that cause necrotic or chlorotic symptoms respectively. Investigation of host responses induced by HSTs provides better insight into the nature of the host susceptibility.
View Article and Find Full Text PDFFungi are of primary ecological, biotechnological and economic importance. Many fundamental biological processes that are shared by animals and fungi are studied in fungi due to their experimental tractability. Many fungi are pathogens or mutualists and are model systems to analyse effector genes and their mechanisms of diversification.
View Article and Find Full Text PDFPtr ToxB, encoded by ToxB, is one of multiple host-selective toxins (HST) produced by the wheat pathogen Pyrenophora tritici-repentis. Homologs of ToxB are found in several ascomycetes, including sister species Pyrenophora bromi, causal agent of brownspot of bromegrass. Due to the close evolutionary relatedness of P.
View Article and Find Full Text PDFHost-selective toxins (HSTs) are effectors produced by some necrotrophic pathogenic fungi that typically confer the ability to cause disease. Often, diseases caused by pathogens that produce HSTs follow an inverse gene-for-gene model where toxin production is required for the ability to cause disease and a single locus in the host is responsible for toxin sensitivity and disease susceptibility. Pyrenophora tritici-repentis represents an ideal pathogen for studying the biological significance of such inverse gene-for-gene interactions, because it displays a complex race structure based on its production of multiple HSTs.
View Article and Find Full Text PDF*ToxA, a host-selective toxin of wheat, can be detected within ToxA-sensitive mesophyll cells, where it localizes to chloroplasts and induces necrosis. Interaction of ToxA with the chloroplast-localized protein ToxABP1 has been implicated in this process. Therefore, we hypothesized that silencing of ToxABP1 in wheat would lead to a necrotic phenotype.
View Article and Find Full Text PDFTo obtain greater insight into the molecular events underlying plant disease susceptibility, we studied transcriptome changes induced by a host-selective toxin of Pyrenophora tritici-repentis, Ptr ToxA (ToxA), on its host plant, wheat. Transcriptional profiling of ToxA-treated leaves of a ToxA-sensitive wheat cultivar was performed using the GeneChip Wheat Genome Array. An improved and up-to-date annotation of the wheat microarray was generated and a new tool for array data analysis (BRAT) was developed, and both are available for public use via a web-based interface.
View Article and Find Full Text PDFPtr ToxA (ToxA) is a proteinaceous necrotizing host-selective toxin produced by Pyrenophora tritici-repentis, a fungal pathogen of wheat (Triticum aestivum). In this study, we have found that treatment of ToxA-sensitive wheat leaves with ToxA leads to a light-dependent accumulation of reactive oxygen species (ROS) that correlates with the onset of necrosis. Furthermore, the accumulation of ROS and necrosis could be inhibited by the antioxidant N-acetyl cysteine, providing further evidence that ROS production is required for necrosis.
View Article and Find Full Text PDFABSTRACT Pyrenophora tritici-repentis, causal agent of tan spot of wheat, produces multiple host-selective toxins (HSTs), including Ptr ToxA, Ptr ToxB, and Ptr ToxC. The specific complement of HSTs produced by a particular isolate determines its host cultivar specificity. Each unique specificity profile, represented by the differential induction of necrosis or chlorosis on a standard set of wheat differentials, defines a unique race.
View Article and Find Full Text PDFMol Plant Microbe Interact
March 2008
Internalization of the proteinaceous host-selective toxin, Ptr ToxA (ToxA), into sensitive wheat mesophyll cells is correlated with toxin activity. The solvent-exposed, Arg-Gly-Asp (RGD)-containing loop of ToxA is a candidate for interaction with the plasma membrane, which is a likely prerequisite to toxin internalization. Based on the percentage of cells affected by a given number of ToxA molecules in a treatment zone, the number of ToxA molecules bound to high-affinity sites was estimated at 3 x 10(6) per cell and the Kd for binding was estimated to be near 1 nM.
View Article and Find Full Text PDFPyrenophora tritici-repentis requires the production of host-selective toxins (HSTs) to cause the disease tan spot of wheat, including Ptr ToxA, Ptr ToxB, and Ptr ToxC. Pyrenophora bromi, the species most closely related to P. tritici-repentis, is the causal agent of brown leaf spot of bromegrass.
View Article and Find Full Text PDFThe filamentous fungus Graphium sp. (ATCC 58400) co-metabolically oxidizes the gasoline oxygenate methyl tertiary butyl ether (MTBE) after growth on gaseous n-alkanes. In this study, the enzymology and regulation of MTBE oxidation by propane-grown mycelia of Graphium sp.
View Article and Find Full Text PDFPyrenophora tritici-repentis, causal agent of tan spot of wheat, produces host-selective toxins that are determinants of pathogenicity or virulence. Ptr ToxA (ToxA), a proteinaceous toxin produced by P. tritici-repentis, is a necrotizing toxin produced by the most common races isolated from infected wheat.
View Article and Find Full Text PDFThe green fluorescent protein (GFP) has been established as the premier in vivo reporter for investigations of gene expression, protein localization, and cell and organism dynamics. The fungal transformation vector pCT74, with sGFP under the control of the ToxA promoter from Pyrenophora tritici-repentis, effectively expresses GFP in a diverse group of filamentous ascomycetes. Due to the versatility of ToxA promoter-driven expression of GFP, we constructed an additional set of fluorescent protein expression vectors to expand the color palette of fluorescent markers for use in filamentous fungi.
View Article and Find Full Text PDFTan spot of wheat (Triticum aestivum), caused by the fungus Pyrenophora tritici-repentis, has significant agricultural and economic impact. Ptr ToxA (ToxA), the first discovered proteinaceous host-selective toxin, is produced by certain P. tritici-repentis races and is necessary and sufficient to cause cell death in sensitive wheat cultivars.
View Article and Find Full Text PDFThe plant pathogenic fungus Pyrenophora tritici-repentis secretes host-selective toxins (HSTs) that function as pathogenicity factors. Unlike most HSTs that are products of enzymatic pathways, at least two toxins produced by P. tritici-repentis are proteins and, thus, products of single genes.
View Article and Find Full Text PDFPtr ToxA was the first proteinaceous necrosis-inducing toxin identified and cloned from the wheat pathogen, Pyrenophora tritici-repentis. How this protein causes necrosis in sensitive wheat cultivars is not known. In an effort to understand the structural features of Ptr ToxA required for induction of necrosis, we employed a combination of site-directed mutagenesis and peptide inhibition studies.
View Article and Find Full Text PDFToxB, a gene that encodes a 6.6-kDa host-selective toxin (HST), is present in several races of the wheat pathogen Pyrenophora tritici-repentis. To learn more about the multiple ToxB open reading frames (ORFs), six of the estimated nine copies from a race 5 isolate were cloned and analyzed.
View Article and Find Full Text PDFThe ToxA gene of Pyrenophora tritici-repentis encodes a host-selective toxin (Ptr ToxA) that has been shown to confer pathogenicity when used to transform a non-pathogenic wheat isolate. Major karyotype polymorphisms between pathogenic and non-pathogenic strains, and to a lesser extent among pathogenic strains, and among non-pathogenic strains were identified. ToxA was localized to a 3.
View Article and Find Full Text PDFAnnu Rev Phytopathol
December 2002
Host-selective toxins, a group of structurally complex and chemically diverse metabolites produced by plant pathogenic strains of certain fungal species, function as essential determinants of pathogenicity or virulence. Investigations into the molecular and biochemical responses to these disease determinants reveal responses typically associated with host defense and incompatibility induced by avirulence determinants. The characteristic responses that unify these disparate disease phenotypes are numerous, yet the evidence implicating a causal relationship of these responses, whether induced by host-selective toxins or avirulence factors, in determining the consequences of the host-pathogen interaction is equivocal.
View Article and Find Full Text PDF