Purpose: To introduce a novel methodology for developing anthropomorphic breast phantoms for use in X-ray-based imaging modalities.
Methods: "Hyperization" is a quasi-stippling mapping operation in which regions of varying grayscale values in a 2D image are transformed into regions of varying holes on a surface. The holes can be cut or engraved on the sheet of paper using a high-resolution laser cutter/engraver.
Purpose: Digital breast tomosynthesis (DBT) is a limited-angle tomographic breast imaging modality that can be used for breast cancer screening in conjunction with full-field digital mammography (FFDM) or synthetic mammography (SM). Currently, there are five commercial DBT systems that have been approved by the U.S.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
October 2019
Current digital mammography systems primarily employ one of two types of detectors: indirect conversion, typically using a cesium-iodine scintillator integrated with an amorphous silicon photodiode matrix, or direct conversion, using a photoconductive layer of amorphous selenium (a-Se) combined with thin-film transistor array. The goal of this study was to evaluate a methodology for objectively assessing image quality to compare human observer task performance in detecting microcalcification clusters and extended mass-like lesions achieved with different detector types. The proposed assessment methodology uses a novel anthropomorphic breast phantom fabricated with ink-jet printing.
View Article and Find Full Text PDFPurpose: The advent of three-dimensional breast imaging systems such as digital breast tomosynthesis (DBT) has great promise for improving the detection and diagnosis of breast cancer. With these new technologies comes an essential need for testing methods to assess the resultant image quality. Although randomized clinical trials are the gold standard for assessing image quality, phantom-based studies can provide a simpler and less burdensome approach.
View Article and Find Full Text PDFPurpose: With the advent of three-dimensional (3D) breast imaging modalities such as digital breast tomosynthesis (DBT) and dedicated breast CT (bCT), research into new anthropomorphic breast phantoms has accelerated. These breast phantoms are important for the optimization of new breast imaging systems, assessing new regulatory submissions to prove safety and effectiveness, and for developing new approaches to acceptance and constancy testing of 3D breast imaging systems. This paper provides a review of current research investigating both digital and physical breast phantom development for use in x-ray based imaging.
View Article and Find Full Text PDFPurpose: The AAPM Task Group 162 aimed to provide a standardized approach for the assessment of image quality in planar imaging systems. This report offers a description of the approach as well as the details of the resultant software bundle to measure detective quantum efficiency (DQE) as well as its basis components and derivatives.
Methods: The methodology and the associated software include the characterization of the noise power spectrum (NPS) from planar images acquired under specific acquisition conditions, modulation transfer function (MTF) using an edge test object, the DQE, and effective DQE (eDQE).
Purpose: Physical phantoms are central to the evaluation of 2D and 3D breast-imaging systems. Currently, available physical phantoms have limitations including unrealistic uniform background structure, large expense, or excessive fabrication time. The purpose of this work is to outline a method for rapidly creating realistic, inexpensive physical anthropomorphic phantoms for use in full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT).
View Article and Find Full Text PDFPurpose: The purpose of this study is to quantify the differences in detectability between full field digital mammography (FFDM), digital breast tomosynthesis (DBT), and synthetic mammography (SM) for challenging, low contrast signals, in the context of both a uniform and an anthropomorphic, textured phantom.
Methods: Images of the phantoms were acquired using a Hologic Selenia Dimensions system. Images were taken at 50%, 100%, and 200% of the dose delivered under automatic exposure control (AEC).
Purpose: In medical imaging systems, proper rendition of anatomy is essential in discerning normal tissue from disease. Currently, digital breast tomosynthesis (DBT) systems are evaluated using subjective evaluation of lesion visibility in uniform phantoms. This study involved the development of a new methodology to objectively measure the rendition of a 3D breast model by an anthropomorphic breast phantom, and its implementation on five clinical DBT systems of different makes and models.
View Article and Find Full Text PDFPurpose: The use of contrast agents in breast imaging has the capability of enhancing nodule detectability and providing physiological information. Accordingly, there has been a growing trend toward using iodine as a contrast medium in digital mammography (DM) and digital breast tomosynthesis (DBT). Widespread use raises concerns about the best way to use iodine in DM and DBT, and thus a comparison is necessary to evaluate typical iodine-enhanced imaging methods.
View Article and Find Full Text PDFMammography is currently the most widely utilized tool for detection and diagnosis of breast cancer. However, in women with dense breast tissue, tissue overlap may obscure lesions. Digital breast tomosynthesis can reduce tissue overlap.
View Article and Find Full Text PDFDetection of breast cancer by positron emission tomography (PET) imaging with 2-(fluorine-18)-2-deoxy-D-glucose (FDG) as the tracer molecule is limited in part by both tumor dimension and metabolic activity. While some types of aggressive breast cancers are associated with a high capacity for FDG uptake, more indolent breast cancers are characterized by low FDG uptake. Moreover, detection of malignant lesions in most clinical settings requires tumor dimensions ≥10 mm.
View Article and Find Full Text PDFPurpose: To correlate the parenchymal texture features at digital breast tomosynthesis (DBT) and digital mammography with breast percent density (PD), an established breast cancer risk factor, in a screening population of women.
Materials And Methods: This HIPAA-compliant study was approved by the institutional review board. Bilateral DBT images and digital mammograms from 71 women (mean age, 54 years; age range, 34-75 years) with negative or benign findings at screening mammography were retrospectively collected from a separate institutional review board-approved DBT screening trial (performed from July 2007 to March 2008) in which all women had given written informed consent.