Species-focused conservation planning is often based on reducing local extinction risk at key sites. However, with increasing levels of habitat fragmentation and pressures from climate change and overexploitation, surrounding landscapes also influence the persistence of species populations, and their effects are increasingly incorporated in conservation planning and management for both species and communities. Here, we present a framework based on metapopulation dynamics in fragmented landscapes, for quantifying the survival (resistance) and reestablishment of species populations following localized extinction events (resilience).
View Article and Find Full Text PDFThe use of linear mixed effects models (LMMs) is increasingly common in the analysis of biological data. Whilst LMMs offer a flexible approach to modelling a broad range of data types, ecological data are often complex and require complex model structures, and the fitting and interpretation of such models is not always straightforward. The ability to achieve robust biological inference requires that practitioners know how and when to apply these tools.
View Article and Find Full Text PDFLandscape-scale approaches to conservation stem largely from the classic ideas of reserve design: encouraging bigger and more sites, enhancing connectivity among sites, and improving habitat quality. Trade-offs are imposed between these four strategies by the limited resources and opportunities available for conservation programmes, including the establishment and management of protected areas, and wildlife-friendly farming and forestry. Although debate regarding trade-offs between the size, number, connectivity and quality of protected areas was prevalent in the 1970-1990s, the implications of the same trade-offs for ongoing conservation responses to threats from accelerating environmental change have rarely been addressed.
View Article and Find Full Text PDF