Purpose: Cytoskeletal protein ensembles exhibit emergent mechanics where behavior exhibited in teams is not necessarily the sum of the components' single molecule properties. In addition, filaments may act as force sensors that distribute feedback and influence motor protein behavior. To understand the design principles of such emergent mechanics, we developed an approach utilizing QCM-D to measure how actomyosin bundles respond mechanically to environmental variables that alter constituent myosin II motor behavior.
View Article and Find Full Text PDFA quartz crystal microbalance (QCM) is an instrument that has the ability to measure nanogram-level changes in mass on a quartz sensor and is traditionally used to probe surface interactions and assembly kinetics of synthetic systems. The addition of dissipation monitoring (QCM-D) facilitates the study of viscoelastic systems, such as those relevant to molecular and cellular mechanics. Due to real-time recording of frequency and dissipation changes and single protein-level precision, the QCM-D is effective in interrogating the viscoelastic properties of cell surfaces and in vitro cellular components.
View Article and Find Full Text PDF