An outstanding example of structural diversity and complexity is found in the compounds with the general formula ABi(3)Q(5) (A = alkali metal; Q = chalcogen). gamma-RbBi(3)S(5) (I), alpha-RbBi(3)Se(5) (II), beta-RbBi(3)Se(5) (III), gamma-RbBi(3)Se(5) (IV), CsBi(3)Se(5) (V), RbBi(3)Se(4)Te (VI), and RbBi(3)Se(3)Te(2) (VII) were synthesized from A(2)Q (A = Rb, Cs; Q = S, Se) and Bi(2)Q(3) (Q = S, Se or Te) at temperatures above 650 degrees C using appropriate reaction protocols. gamma-RbBi(3)S(5) and alpha-RbBi(3)Se(5) have three-dimensional tunnel structures while the rest of the compounds have lamellar structures.
View Article and Find Full Text PDFThe successful synthesis and structural characterization of molecules that represent segments of extended solids is a valuable strategy for learning metric and stereochemical characteristics of those solids. This approach has been useful in cases in which the solids are particularly difficult to crystallize and thus their atomic connectivity and overall structures become difficult to deduce with X-ray diffraction techniques. One such class of materials is the covalently linked C(x)N(y) extended solids, where molecular analogues remain largely absent.
View Article and Find Full Text PDFIn this paper we report the synthesis and characterization of Ca(II), Gd(III) and Ce(III) complexes with chlorophenoxyalkanoic acids, which are commonly used as herbicides. The Gd(III) and Ca(II) complexes were characterized by the typical formulas [Gd(III)(L)(3)(H(2)O)(2).2dmf](n) and [Ca(L)(2)(MeOH)(2)](n) [L=[2,4-D=2,4-dichlorophenoxyacetic acid, 2,4,5-T=2,4,5-trichlorophenoxyacetic acid, MCPA=2-methyl-4-chlorophenoxy acetic acid and 2,4-DP=2-(2,4-dichlorophenoxy)propanoic acid]].
View Article and Find Full Text PDFThe reaction of pentaerythritol and tetraethylorthocarbonate at 260 degrees C for 12 h yields a white crystalline material that was characterized by 13C CPMAS NMR, CHN analysis, FT-IR, electron and X-ray powder diffraction, and Rietveld analysis. The white crystalline material was found to have the formula C6H8O4 and a crystal structure with a monoclinic cell [a = 9.167 A, b = 5.
View Article and Find Full Text PDFInteraction of manganese with salicylhydroxamic ligands leads to the formation of a series of 15-membered metallacrown Mn(II)(L)(2)[15-MC(Mn(III)N(shi))-5](py)(6) (L=alkanoato ligand). The crystal structure contains a neutral 15-membered metallacrown ring of the type [15-MC(Mn(III)N(shi))-5]. The metallacrown core consists of five Mn(III) and five shi(-3) ligands.
View Article and Find Full Text PDFNaCeP(2)Se(6), Cu(0.4)Ce(1.2)P(2)Se(6), and AgCeP(2)Se(6) were prepared from nearly stoichiometric proportions of the starting materials plus extra selenium at 750-850 degrees C.
View Article and Find Full Text PDF