Core cross-linked polymeric micelles (CCPMs) are designed to improve the therapeutic profile of hydrophobic drugs, reduce or completely avoid protein corona formation, and offer prolonged circulation times, a prerequisite for passive or active targeting. In this study, we tuned the CCPM stability by using bifunctional or trifunctional cross-linkers and varying the cross-linkable polymer block length. For CCPMs, amphiphilic thiol-reactive polypept(o)ides of polysarcosine--poly(-ethylsulfonyl-l-cysteine) [pSar--pCys(SOEt)] were employed.
View Article and Find Full Text PDFA multistimuli-responsive supramolecular copolymerization is reported. The copolymerization is driven by hydrogen bond encoded β-sheet-based charge co-assembly into 1D nanorods in water, using glutamic acid or lysine residues in either of the peptide comonomers. The incorporation of methionine as hydrophobic amino acid supports β-sheet formation, but oxidation of the thioether side-chain to a sulfoxide functional group destabilizes the β-sheet ordered domains and induces disassembly of the supramolecular polymers.
View Article and Find Full Text PDFThe combination of attractive supramolecular interactions of a hydrophobic Au-metallopeptide with the shielding effect of flexible oligoethylene glycol chains provides access to a stepwise self-assembly of a Au-metalloamphiphile in water. Kinetic control of the supramolecular polymer morphology is achieved using a temperature-dependent assembly protocol, which yields low dispersity supramolecular polymers (metastable state I) or helical bundled nanorods (state II).
View Article and Find Full Text PDF