Open-top light-sheet (OTLS) microscopy offers rapid 3D imaging of large optically cleared specimens. This enables nondestructive 3D pathology, which provides key advantages over conventional slide-based histology including comprehensive sampling without tissue sectioning/destruction and visualization of diagnostically important 3D structures. With 3D pathology, clinical specimens are often labeled with small-molecule stains that broadly target nucleic acids and proteins, mimicking conventional hematoxylin and eosin (H&E) dyes.
View Article and Find Full Text PDFSignificance: In recent years, we and others have developed non-destructive methods to obtain three-dimensional (3D) pathology datasets of clinical biopsies and surgical specimens. For prostate cancer risk stratification (prognostication), standard-of-care Gleason grading is based on examining the morphology of prostate glands in thin 2D sections. This motivates us to perform 3D segmentation of prostate glands in our 3D pathology datasets for the purposes of computational analysis of 3D glandular features that could offer improved prognostic performance.
View Article and Find Full Text PDFRecent advances in 3D pathology offer the ability to image orders of magnitude more tissue than conventional pathology methods while also providing a volumetric context that is not achievable with 2D tissue sections, and all without requiring destructive tissue sectioning. Generating high-quality 3D pathology datasets on a consistent basis, however, is not trivial and requires careful attention to a series of details during tissue preparation, imaging and initial data processing, as well as iterative optimization of the entire process. Here, we provide an end-to-end procedure covering all aspects of a 3D pathology workflow (using light-sheet microscopy as an illustrative imaging platform) with sufficient detail to perform well-controlled preclinical and clinical studies.
View Article and Find Full Text PDFBiomed Opt Express
November 2023
A miniature optical-sectioning fluorescence microscope with high sensitivity and resolution would enable non-invasive and real-time tissue inspection, with potential use cases including early disease detection and intraoperative guidance. Previously, we developed a miniature MEMS-based dual-axis confocal (DAC) microscope that enabled video-rate optically sectioned microscopy of human tissues. However, the device's clinical utility was limited due to a small field of view, a non-adjustable working distance, and a lack of a sterilization strategy.
View Article and Find Full Text PDFEarly detection of esophageal neoplasia via evaluation of endoscopic surveillance biopsies is the key to maximizing survival for patients with Barrett's esophagus, but it is hampered by the sampling limitations of conventional slide-based histopathology. Comprehensive evaluation of whole biopsies with 3-dimensional (3D) pathology may improve early detection of malignancies, but large 3D pathology data sets are tedious for pathologists to analyze. Here, we present a deep learning-based method to automatically identify the most critical 2-dimensional (2D) image sections within 3D pathology data sets for pathologists to review.
View Article and Find Full Text PDFRecent advances in 3D pathology offer the ability to image orders-of-magnitude more tissue than conventional pathology while providing a volumetric context that is lacking with 2D tissue sections, all without requiring destructive tissue sectioning. Generating high-quality 3D pathology datasets on a consistent basis is non-trivial, requiring careful attention to many details regarding tissue preparation, imaging, and data/image processing in an iterative process. Here we provide an end-to-end protocol covering all aspects of a 3D pathology workflow (using light-sheet microscopy as an illustrative imaging platform) with sufficient detail to perform well-controlled preclinical and clinical studies.
View Article and Find Full Text PDF