Publications by authors named "Lydia Kuhnert"

Multidrug resistance is a major challenge in clinical cancer therapy. In particular, overexpression of certain ATP-binding cassette (ABC) transporter proteins, like the efflux transporter ABCG2, also known as breast cancer resistance protein (BCRP), has been associated with the development of resistance to applied chemotherapeutic agents in cancer therapies, and therefore targeted inhibition of BCRP-mediated transport might lead to reversal of this (multidrug) resistance (MDR). In a previous study, we have described the introduction of a boron-carbon cluster, namely closo-dicarbadodecaborane or carborane, as an inorganic pharmacophore into a polymethoxylated 2-phenylquinazolin-4-amine backbone.

View Article and Find Full Text PDF

The ABCG2 transporter protein, as part of several known mechanisms involved in multidrug resistance, has the ability to transport a broad spectrum of substrates out of the cell and is, therefore, considered as a potential target to improve cancer therapies or as an approach to combat drug resistance in cancer. We have previously reported carborane-functionalized quinazoline derivatives as potent inhibitors of human ABCG2 which effectively reversed breast cancer resistance protein (BCRP)-mediated mitoxantrone resistance. In this work, we present the evaluation of our most promising carboranyl BCRP inhibitors regarding their toxicity towards ABCG2-expressing cancer cell lines (MCF-7, doxorubicin-resistant MCF-7 or MCF-7 Doxo, HT29, and SW480) and, consequently, with the co-administration of an inhibitor and therapeutic agent, their ability to increase the efficacy of therapeutics with the successful inhibition of ABCG2.

View Article and Find Full Text PDF

Success of chemotherapy is often hampered by multidrug resistance. One mechanism for drug resistance is the elimination of anticancer drugs through drug transporters, such as breast cancer resistance protein (BCRP; also known as ABCG2), and causes a poor 5-year survival rate of human patients. Co-treatment of chemotherapeutics and natural compounds, such as baicalein, is used to prevent chemotherapeutic resistance but is limited by rapid metabolism.

View Article and Find Full Text PDF

The role of ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR) in anti-cancer therapy is often challenging, frequently leading to inefficiency of treatments. Cancer cells exploit efflux transporters, like the breast cancer resistance protein (BCRP, ABCG2), to secrete chemotherapeutic substances. In this study, an N-phenyl-2-carboranylquinazolin-4-amine (8) was designed as inorganic-organic hybrid BCRP inhibitor.

View Article and Find Full Text PDF

The ineffectiveness and failing of chemotherapeutic treatments are often associated with multidrug resistance (MDR). MDR is primarily linked to the overexpression of ATP-binding cassette (ABC) transporter proteins in cancer cells. ABCG2 (ATP-binding cassette subfamily G member 2, also known as the breast cancer resistance protein (BCRP)) mediates MDR by an increased drug efflux from the cancer cells.

View Article and Find Full Text PDF

12-Lipoxygenase is crucial for tumour angiogenesis. 5,6,7-Trihydroxy-2-phenyl-4H-1-benzopyran-4-one (baicalein) is a suitable inhibitor for this enzyme but is rapidly metabolised in vivo. Thus, an improvement of the metabolic stability is necessary to enhance the therapeutic efficiency.

View Article and Find Full Text PDF

In bovine mammary glands, the ABCG2 transporter actively secretes xenobiotics into dairy milk. This can have significant implications when cattle are exposed to pesticide residues in feed. Recent studies indicate that the fungicide prochloraz activates the aryl hydrocarbon receptor (AhR) pathway, increasing bovine ABCG2 (bABCG2) gene expression and efflux activity.

View Article and Find Full Text PDF