Orofacial clefts (OFCs) of the lip and/or palate are among the most common human birth defects. Current treatment strategies focus on functional and cosmetic repair but even when this care is available, individuals born with OFCs are at high risk for persistent neurobehavioral problems. In addition to learning disabilities and reduced academic achievement, recent evidence associates OFCs with elevated risk for a constellation of psychiatric outcomes including anxiety disorders, autism spectrum disorder, and schizophrenia.
View Article and Find Full Text PDFCleft lip is one of the most common human birth defects, yet our understanding of the mechanisms that regulate lip morphogenesis is limited. Here, we show in mice that sonic hedgehog (Shh)-induced proliferation of cranial neural crest cell (cNCC) mesenchyme is required for upper lip closure. Gene expression profiling revealed a subset of Forkhead box (Fox) genes that are regulated by Shh signaling during lip morphogenesis.
View Article and Find Full Text PDFCortical interneurons (cINs) are a diverse group of locally projecting neurons essential to the organization and regulation of neural networks. Though they comprise only ∼20% of neurons in the neocortex, their dynamic modulation of cortical activity is requisite for normal cognition and underlies multiple aspects of learning and memory. While displaying significant morphological, molecular, and electrophysiological variability, cINs collectively function to maintain the excitatory-inhibitory balance in the cortex by dampening hyperexcitability and synchronizing activity of projection neurons, primarily through use of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA).
View Article and Find Full Text PDFHoloprosencephaly (HPE) is a common and severe human developmental abnormality marked by malformations of the forebrain and face. Although several genetic mutations have been linked to HPE, phenotypic outcomes range dramatically, and most cases cannot be attributed to a specific cause. Gene-environment interaction has been invoked as a premise to explain the etiological complexity of HPE, but identification of interacting factors has been extremely limited.
View Article and Find Full Text PDFThe Hedgehog (Hh) signaling pathway mediates multiple spatiotemporally-specific aspects of brain and face development. Genetic and chemical disruptions of the pathway are known to result in an array of structural malformations, including holoprosencephaly (HPE), clefts of the lip with or without cleft palate (CL/P), and clefts of the secondary palate only (CPO). Here, we examined patterns of dysmorphology caused by acute, stage-specific Hh signaling inhibition.
View Article and Find Full Text PDF