Publications by authors named "Lydia Hardowar"

Article Synopsis
  • Chemotherapy-induced neuropathic pain (CINP) is a significant issue for pediatric cancer survivors, and current pain treatments are not effective due to limited understanding of CINP mechanisms.
  • This study explores how cisplatin leads to neuroinflammation and increased pain sensitivity through nerve growth factor (NGF) interactions, particularly focusing on macrophage activity in the dorsal root ganglia (DRG).
  • The research findings suggest that targeting the NGF-TrkA signaling pathway in macrophages may offer new pain relief strategies for adults who survived childhood cancer.
View Article and Find Full Text PDF

Cisplatin-based chemotherapy is a common treatment for paediatric cancer. Unfortunately, cisplatin treatment causes neuropathic pain, a highly prevalent adverse health related complication in adult childhood cancer survivors. Due to minimal understanding of this condition, there are currently no condition tailored analgesics available.

View Article and Find Full Text PDF

Intracranial tumors present a significant therapeutic challenge due to their physiological location. Immunotherapy presents an attractive method for targeting these intracranial tumors due to relatively low toxicity and tumor specificity. Here we show that SCIB1, a TRP-2 and gp100 directed ImmunoBody® DNA vaccine, generates a strong TRP-2 specific immune response, as demonstrated by the high number of TRP2-specific IFNγ spots produced and the detection of a significant number of pentamer positive T cells in the spleen of vaccinated mice.

View Article and Find Full Text PDF

Chemotherapy causes sensory disturbances in cancer patients that results in neuropathies and pain. As cancer survivorships has dramatically increased over the past 10 years, pain management of these patients is becoming clinically more important. Current analgesic strategies are mainly ineffective and long-term use is associated with severe side effects.

View Article and Find Full Text PDF

Nociception is a fundamental acute protective mechanism that prevents harm to an organism. Understanding the integral processes that control nociceptive processing are fundamental to our appreciation of which cellular and molecular features underlie this process. There is an extensive understanding of how sensory neurons interpret differing sensory modalities and intensities.

View Article and Find Full Text PDF

Neuropathic pain, such as that seen in diabetes mellitus, results in part from central sensitisation in the dorsal horn. However, the mechanisms responsible for such sensitisation remain unclear. There is evidence that disturbances in the integrity of the spinal vascular network can be causative factors in the development of neuropathic pain.

View Article and Find Full Text PDF

The spinal cord, a compartment of the central nervous system, is made up of a number of architecturally distinct neural centers that influence an array of neurophysiological systems. The primary role of the spinal cord is the modulation of sensory and motor function by acting as a relay station between the periphery and the brain. Inherently these are considered as neural networks, however the functional dynamics of these tissues consist of a heterogenic population of cell types, all working in harmony to maintain physiological function.

View Article and Find Full Text PDF