Publications by authors named "Lydia C Powell"

Low molecular weight alginate oligosaccharides have been shown to exhibit anti-microbial activity against a range of multi-drug resistant bacteria, including . Previous studies suggested that the disruption of calcium (Ca)-DNA binding within bacterial biofilms and dysregulation of quorum sensing (QS) were key factors in these observed effects. To further investigate the contribution of Ca binding, G-block (OligoG) and M-block alginate oligosaccharides (OligoM) with comparable average size DPn 19 but contrasting Ca binding properties were prepared.

View Article and Find Full Text PDF

Background: Peri-implantitis has become an inexorable clinical challenge in implantology. Topical immunomodulatory epoxy-tiglianes (EBCs), derived from the Queensland blushwood tree, which induce remodeling and resolve dermal infection via induction of the inflammasome and biofilm disruption, may offer a novel therapeutic approach.

Design: antimicrobial activity of EBC structures (EBC-46, EBC-1013 and EBC-147) against , and in minimum inhibitory concentration, growth curve and permeabilization assays were determined.

View Article and Find Full Text PDF

Background: The increasing prevalence of invasive fungal infections in immuno-compromised patients is a considerable cause of morbidity and mortality. With the rapid emergence of antifungal resistance and an inadequate pipeline of new therapies, novel treatment strategies are now urgently required.

Methods: The antifungal activity of the alginate oligosaccharide OligoG in conjunction with nystatin was tested against a range of spp.

View Article and Find Full Text PDF

The management of antibiotic-resistant, bacterial biofilm infections in chronic skin wounds is an increasing clinical challenge. Despite advances in diagnosis, many patients do not derive benefit from current anti-infective/antibiotic therapies. Here, we report a novel class of naturally occurring and semisynthetic epoxy-tiglianes, derived from the Queensland blushwood tree (, and demonstrate their antimicrobial activity (modifying bacterial growth and inducing biofilm disruption), with structure/activity relationships established against important human pathogens.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a multifactorial disease leading to degeneration of articular cartilage, causing morbidity in approximately 8.5 million of the UK population. As the dense extracellular matrix of articular cartilage is primarily composed of collagen, cartilage repair strategies have exploited the biocompatibility and mechanical strength of bovine and porcine collagen to produce robust scaffolds for procedures such as matrix-induced chondrocyte implantation (MACI).

View Article and Find Full Text PDF

Background: Sialyl-Lewis X/L-selectin high affinity binding interactions between transmembrane O-glycosylated mucins proteins and the embryo have been implicated in implantation processes within the human reproductive system. However, the adhesive properties of these mucins at the endometrial cell surface are difficult to resolve due to known discrepancies between in vivo models and the human reproductive system and a lack of sensitivity in current in vitro models. To overcome these limitations, an in vitro model of the human endometrial epithelial was interrogated with single molecule force spectroscopy (SMFS) to delineate the molecular configurations of mucin proteins that mediate the high affinity L-selectin binding required for human embryo implantation.

View Article and Find Full Text PDF

Novel therapeutics designed to target the polymeric matrix of biofilms requires innovative techniques to accurately assess their efficacy. Here, multiple particle tracking (MPT) was developed to characterize the physical and mechanical properties of antimicrobial resistant (AMR) bacterial biofilms and to quantify the effects of antibiotic treatment. Studies employed nanoparticles (NPs) of varying charge and size (40-500 nm) in Pseudomonas aeruginosa PAO1 and methicillin-resistant Staphylococcus aureus (MRSA) biofilms and also in polymyxin B (PMB) treated Escherichia coli biofilms of PMB-sensitive (PMB) IR57 and PMB-resistant (PMB) PN47 strains.

View Article and Find Full Text PDF

Chronic lung infections in cystic fibrosis (CF) evolve to generate environmentally adapted biofilm communities, leading to increased patient morbidity and mortality. OligoG CF-5/20, a low-molecular-weight inhaled alginate oligomer therapy, is currently in phase IIb/III clinical trials in CF patients. Experimental evolution of in response to OligoG CF-5/20 was assessed using a bead biofilm model allowing continuous passage (45 days; ∼245 generations).

View Article and Find Full Text PDF

The recent emergence of resistance to colistin, an antibiotic of last resort with dose-limiting toxicity, has highlighted the need for alternative approaches to combat infection. This study aimed to generate and characterise alginate oligosaccharide ("OligoG")-polymyxin (polymyxin B and E (colistin)) conjugates to improve the effectiveness of these antibiotics. OligoG-polymyxin conjugates (amide- or ester-linked), with molecular weights of 5200-12,800 g/mol and antibiotic loading of 6.

View Article and Find Full Text PDF

Cellulose nanofibrils (CNFs) from wood pulp are a renewable material possessing advantages for biomedical applications because of their customizable porosity, mechanical strength, translucency, and environmental biodegradability. Here, we investigated the growth of multispecies wound biofilms on CNF formulated as aerogels and films incorporating the low-molecular-weight alginate oligosaccharide OligoG CF-5/20 to evaluate their structural and antimicrobial properties. Overnight microbial cultures were adjusted to 2.

View Article and Find Full Text PDF

Polymer masked-unmasked protein therapy (PUMPT) uses conjugation of a biodegradable polymer, such as dextrin, hyaluronic acid, or poly(l-glutamic acid), to mask a protein or peptide's activity; subsequent locally triggered degradation of the polymer at the target site regenerates bioactivity in a controllable fashion. Although the concept of PUMPT is well established, the relationship between protein unmasking and reinstatement of bioactivity is unclear. Here, we used dextrin-colistin conjugates to study the relationship between the molecular structure (degree of unmasking) and biological activity.

View Article and Find Full Text PDF

causes problematic chronic lung infections in those suffering from cystic fibrosis. This is due to its antimicrobial resistance mechanisms and its ability to form robust biofilm communities with increased antimicrobial tolerances. Using novel antimicrobials or repurposing current ones is required in order to overcome these problems.

View Article and Find Full Text PDF

An essential aspect of stem cell in vitro culture and in vivo therapy is achieving sustained levels of growth factors to support stem cell survival and expansion, while maintaining their multipotency and differentiation potential. This study investigated the ability of dextrin (~74,000 g/mol; 27.8 mol% succinoylation) conjugated to epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF; or FGF-2) (3.

View Article and Find Full Text PDF

Acquisition of a mucoid phenotype by sp. in the lungs of cystic fibrosis (CF) patients, with subsequent over-production of extracellular polymeric substance (EPS), plays an important role in mediating the persistence of multi-drug resistant (MDR) infections. The ability of a low molecular weight (Mn = 3200 g mol) alginate oligomer (OligoG CF-5/20) to modify biofilm structure of mucoid (NH57388A) was studied in vitro using scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) with Texas Red (TxRd®)-labelled OligoG and EPS histochemical staining.

View Article and Find Full Text PDF

plays a major role in many chronic infections. Its ability to readily form biofilms contributes to its success as an opportunistic pathogen and its resistance/tolerance to antimicrobial/antibiotic therapy. A low-molecular-weight alginate oligomer (OligoG CF-5/20) derived from marine algae has previously been shown to impair motility in biofilms and disrupt pseudomonal biofilm assembly.

View Article and Find Full Text PDF

In chronic respiratory disease, the formation of dense, 3-dimensional "microcolonies" by within the airway plays an important role in contributing to resistance to treatment. An biofilm model of pseudomonal microcolony formation using artificial-sputum (AS) medium was established to study the effects of low-molecular-weight alginate oligomers (OligoG CF-5/20) on pseudomonal growth, microcolony formation, and the efficacy of colistin. The studies employed clinical cystic fibrosis (CF) isolates ( = 3) and reference nonmucoid and mucoid multidrug-resistant (MDR) CF isolates ( = 7).

View Article and Find Full Text PDF

Concerns about acquisition of antibiotic resistance have led to increasing demand for new antimicrobial therapies. OligoG CF-5/20 is an alginate oligosaccharide previously shown to have antimicrobial and antibiotic potentiating activity. We investigated the structural modification of the bacterial cell wall by OligoG CF-5/20 and its effect on membrane permeability.

View Article and Find Full Text PDF

Chronic wounds pose an increasingly significant worldwide economic burden (over £1 billion per annum in the UK alone). With the escalation in global obesity and diabetes, chronic wounds will increasingly be a significant cause of morbidity and mortality. Cellulose nanofibrils (CNF) are highly versatile and can be tailored with specific physical properties to produce an assortment of three-dimensional structures (hydrogels, aerogels or films), for subsequent utilization as wound dressing materials.

View Article and Find Full Text PDF

The host- and bacteria-derived extracellular polysaccharide coating of the lung is a considerable challenge in chronic respiratory disease and is a powerful barrier to effective drug delivery. A low molecular weight 12-15-mer alginate oligosaccharide (OligoG CF-5/20), derived from plant biopolymers, was shown to modulate the polyanionic components of this coating. Molecular modeling and Fourier transform infrared spectroscopy demonstrated binding between OligoG CF-5/20 and respiratory mucins.

View Article and Find Full Text PDF

Nanocellulose from wood is a novel biomaterial, which is highly fibrillated at the nanoscale. This affords the material a number of advantages, including self-assembly, biodegradability and the ability to absorb and retain moisture, which highlights its potential usefulness in clinical wound-dressing applications. In these in vitro studies, the wound pathogen Pseudomonas aeruginosa PAO1 was used to assess the ability of two nanocellulose materials to impair bacterial growth (<48 h).

View Article and Find Full Text PDF

Nanocellulose has a variety of advantages, which make the material most suitable for use in biomedical devices such as wound dressings. The material is strong, allows for production of transparent films, provides a moist wound healing environment, and can form elastic gels with bioresponsive characteristics. In this study, we explore the application of nanocellulose as a bioink for modifying film surfaces by a bioprinting process.

View Article and Find Full Text PDF

The oligosaccharide OligoG, an alginate derived from seaweed, has been shown to have anti-bacterial and anti-biofilm properties and potentiates the activity of selected antibiotics against multi-drug resistant bacteria. The ability of OligoG to perturb fungal growth and potentiate conventional antifungal agents was evaluated using a range of pathogenic fungal strains. Candida (n = 11) and Aspergillus (n = 3) spp.

View Article and Find Full Text PDF

Pseudomonas aeruginosa (PA) biofilm-associated infections are a common cause of morbidity in chronic respiratory disease and represent a therapeutic challenge. Recently, the ability of a novel alginate oligomer (OligoG) to potentiate the effect of antibiotics against gram-negative, multi-drug-resistant bacteria and inhibit biofilm formation in vitro has been described. Interaction of OligoG with the cell surface of PA was characterized at the nanoscale using atomic force microscopy (AFM), zeta potential measurement (surface charge), and sizing measurements (dynamic light scattering).

View Article and Find Full Text PDF

The influence of a novel, safe antibiofilm therapy on the mechanical properties of Pseudomonas aeruginosa and Acinetobacter baumannii biofilms in vitro was characterized. A multiscale approach employing atomic force microscopy (AFM) and rheometry was used to quantify the mechanical disruption of the biofilms by a therapeutic polymer based on a low-molecular weight alginate oligosaccharide (OligoG). AFM demonstrated structural alterations in the biofilms exposed to OligoG, with significantly lower Young's moduli than the untreated biofilms, (149 MPa vs 242 MPa; p < 0.

View Article and Find Full Text PDF

Atomic Force Microscopy (AFM) has proven itself over recent years as an essential tool for the analysis of microbial systems. This article will review how AFM has been used to study microbial systems to provide unique insight into their behavior and relationship with their environment. Immobilization of live cells has enabled AFM imaging and force measurement to provide understanding of the structure and function of numerous microbial cells.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioneecvfsmu5vvbdh3pigp0dnobgdbvdqg9): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once