Marek's disease virus (MDV), an alphaherpesvirus of poultry, causes Marek's disease and is characterized by visceral CD4+TCRαβ+ T-cell lymphomas in susceptible hosts. Immortal cell lines harbouring the viral genome have been generated from ex vivo cultures of MD tumours. As readily available sources of large numbers of cells, MDV-transformed lymphoblastoid cell lines (LCLs) are extremely valuable for studies of virus-host interaction.
View Article and Find Full Text PDFCould some vaccines drive the evolution of more virulent pathogens? Conventional wisdom is that natural selection will remove highly lethal pathogens if host death greatly reduces transmission. Vaccines that keep hosts alive but still allow transmission could thus allow very virulent strains to circulate in a population. Here we show experimentally that immunization of chickens against Marek's disease virus enhances the fitness of more virulent strains, making it possible for hyperpathogenic strains to transmit.
View Article and Find Full Text PDFTo assess the effect of various vaccine strains on replication and shedding of virulent Marek's disease virus from experimentally infected chickens, quantitative PCR (q-PCR) methods were developed to accurately quantify viral DNA in infected chickens and in the environment in which they were housed. Four groups of 10 chickens, kept in poultry isolators, were vaccinated at 1 day old with one of four vaccines covering each of the three vaccine serotypes, then challenged with very virulent MDV strain Md5 at 8 days of age. At regular time-points, feather tips were collected from each chicken and poultry dust was collected from the air-extract prefilter of each isolator.
View Article and Find Full Text PDF