Publications by authors named "Lyda Halbaut"

Aim: Oral candidiasis is often challenging due to limited effectiveness of topical treatments. This study aimed to develop novel caspofungin formulations for administration onto the oral mucosa to enhance drug retention and efficacy.

Method: Five caspofungin (2%, w/v) formulations were developed to assess their permeability, retention and mucoadhesiveness.

View Article and Find Full Text PDF

Cutaneous leishmaniasis (CL) poses a significant public health concern in endemic regions due to its increasing prevalence and substantial impact on affected individuals. This disease is primarily caused by the protozoa, which are transmitted through insect bites, and it manifests as a range of symptoms, from self-healing lesions to severe disfigurement. Current treatments, which often involve the parenteral administration of antimonials, face challenges such as poor compliance and adverse effects.

View Article and Find Full Text PDF

Three-dimensional (3D) bioprinting is considered one of the most advanced tools to build up materials for tissue engineering. The aim of this work was the design, development and characterization of a bioink composed of human mesenchymal stromal cells (hMSC) for extrusion through nozzles to create these 3D structures that might potentially be apply to replace the function of damaged natural tissue. In this study, we focused on the advantages and the wide potential of biocompatible biomaterials, such as hyaluronic acid and alginate for the inclusion of hMSC.

View Article and Find Full Text PDF

Thyme oil (THO) possesses excellent antibacterial and antioxidant properties which are suitable for skin inflammatory disorders such as acne vulgaris. However, THO is insoluble in water and its components are highly volatile. Therefore, these drawbacks may be overcome by its encapsulation in biodegradable PLGA nanoparticles (THO-NPs) that had been functionalized using several strategies.

View Article and Find Full Text PDF

Aim: Design, produce and assess the viability of a novel nanotechnological antibacterial thermo-sensible intracanal medicament This involves encapsulating calcium hydroxide (Ca(OH)) within polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) and dispersing them in a thermosensitive gel (Ca(OH)-NPs-gel). In addition, perform in vitro and ex vivo assessments to evaluate tissue irritation and penetration capacity into dentinal tubules in comparison to free Ca(OH).

Methodology: Reproducibility of Ca(OH)₂-NPs was confirmed by obtaining the average size of the NPs, their polydispersity index, zeta potential and entrapment efficiency.

View Article and Find Full Text PDF

Purpose: is one of the most prevalent dermal disorders affecting skin health and appearance. To date, there is no effective cure for this pathology, and the majority of marketed formulations eliminate both healthy and pathological microbiota. Therefore, hereby we propose the encapsulation of an antimicrobial natural compound (thymol) loaded into lipid nanostructured systems to be topically used against acne.

View Article and Find Full Text PDF

Thymol-loaded PLGA nanoparticles (TH-NPs) were incorporated into different semi-solid formulations using variable gelling agents (carbomer, polysaccharide and poloxamer). The formulations were physicochemically characterized in terms of size, polydispersity index and zeta potential. Moreover, stability studies were performed by analyzing the backscattering profile showing that the gels were able to increase the nanoparticles stability at 4 °C.

View Article and Find Full Text PDF

Acne constitutes one of the most prevalent skin disorder affecting both skin and mental health of patients. However, no cure has been developed so far. In this area, Thymol constitutes a potential candidate since it is able to restore the healthy microbiota of the skin.

View Article and Find Full Text PDF

Wound healing is a natural physiological reaction to tissue injury. Hydrogels show attractive advantages in wound healing not only due to their biodegradability, biocompatibility and permeability but also because provide an excellent environment for cell migration and proliferation. The main objective of the present study was the design and characterization of a hydrogel loaded with human mesenchymal stromal cells (hMSCs) for use in would healing of superficial skin injures.

View Article and Find Full Text PDF

Alzheimer's disease is characterized by a progressive deterioration of neurons resulting in a steady loss of cognitive functions and memory. Many treatments encounter the challenge of overcoming the blood-brain barrier, thus the intranasal route is a non-invasive effective alternative that enhances the drug delivery in the target organ-the brain-and reduces the side effects associated with systemic administration. This study aimed at developing intranasal gels of donepezil as an approach to Alzheimer's disease.

View Article and Find Full Text PDF

Riluzole-loaded PLGA nanoparticles (RLZ-NPs) were developed to improve the biopharmaceutical profile of RLZ after ocular administration. Moreover, RLZ-NPs were dispersed in an in situ gelling system (RLZ-NPs-Gel) for topical administration as a potential neuroprotective strategy against glaucoma. Formulations were optimized using the design of experiments approach.

View Article and Find Full Text PDF

This study describes the preparation and evaluation of two formulations, a hydrogel and a nanostructured system, containing ketorolac tromethamine as an anti-inflammatory agent for the local therapy against the inflammatory process derived from the surgical excision of Condyloma acuminata. Both formulations were physicochemically characterized. In vitro release profiles show that the nanoparticles release 92% ± 2.

View Article and Find Full Text PDF

Condyloma acuminata is an infectious disease caused by the human papilloma virus (HPV) and one of the most common sexually transmitted infections. It is manifested as warts that frequently cause pain, pruritus, burning, and occasional bleeding. Treatment (physical, chemical, or surgical) can result in erosion, scars, or ulcers, implying inflammatory processes causing pain.

View Article and Find Full Text PDF

Apremilast (APR) is a selective phosphodiesterase 4 inhibitor administered orally in the treatment of moderate-to-severe plaque psoriasis and active psoriatic arthritis. The low solubility and permeability of this drug hinder its dermal administration. The purpose of this study was to design and characterize an apremilast-loaded microemulsion (APR-ME) as topical therapy for local skin inflammation.

View Article and Find Full Text PDF

Development of a melatonin nanogel intended for wound healing (WH) application. The main components of the nanogel were poloxamer 407, chitosan and hyaluronic acid. The nanogel was characterized by the assessment of physical interactions, swelling, wettability, rheological properties and internal structure.

View Article and Find Full Text PDF

The aim of this research was the development and characterization of three gel dosage forms of Halobetasol propionate loaded lipid nanoparticles (HB-NLC) for the treatment of inflammatory skin diseases. A Pluronic gel (Pl-HB-NLC), a Carbopol gel (Cb-HB-NLC) and a Cremigel (Cg-HB-NLC), were characterized for stability, swelling, degradation, porosity and rheology. The biopharmaceutical behavior of in vitro release and ex vivo permeation, along with microbiological stability were also evaluated.

View Article and Find Full Text PDF

Amphotericin B (AmB) is a potent antifungal successfully used intravenously to treat visceral leishmaniasis but depending on the infecting species, it is not always recommended against cutaneous leishmaniasis (CL). To address the need for alternative topical treatments of CL, the aim of this study was to elaborate and characterize an AmB gel. The physicochemical properties, stability, rheology and in vivo tolerance were assayed.

View Article and Find Full Text PDF

Cutaneous leishmaniasis (CL) is treated with painful intralesional injections of meglumine antimoniate (MA). With the aim of developing an alternative topical treatment for CL, a gel-based formulation with 30% MA was prepared and its physicochemical properties, stability and rheological behavior were studied. The following were assessed: drug release on propylene hydrophilic membranes ex vivo human skin permeation, tolerance in healthy volunteers, cytotoxicity in three cell lines and anti-leishmanial activity against promastigotes and amastigotes.

View Article and Find Full Text PDF

Pioglitazone has been reported in the literature to have a substantial role in the improvement of overall cognition in a mouse model. With this in mind, the aim of this study was to determine the most efficacious route for the administration of Pioglitazone nanoparticles (PGZ-NPs) in order to promote drug delivery to the brain for the treatment of Alzheimer's disease. PGZ-loaded NPs were developed by the solvent displacement method.

View Article and Find Full Text PDF

Donepezil (DPZ) is widely used in the treatment of Alzheimer's disease in tablet form for oral administration. The pharmacological efficacy of this drug can be enhanced by the use of intranasal administration because this route makes bypassing the blood⁻brain barrier (BBB) possible. The aim of this study was to develop a nanoemulsion (NE) as well as a nanoemulsion with a combination of bioadhesion and penetration enhancing properties (PNE) in order to facilitate the transport of DPZ from nose-to-brain.

View Article and Find Full Text PDF

Magnetoliposomes (MLPs) offer many new possibilities in cancer therapy and diagnosis, including the transport of antitumor drugs, hyperthermia treatment, detection using imaging techniques, and even cell migration. However, high biocompatibility and functionality after cell internalization are essential to their successful application. We synthesized maghemite nanoparticles (γ-FeO) by oxidizing magnetite cores (FeO) and coating them with phosphatidylcholine (PC) liposomes, obtained using the thin film hydration method, to generate MLPs.

View Article and Find Full Text PDF

Purpose: In order to obtain dermal vehicles of ketorolac tromethamine (KT) for the local treatment of inflammation and restrict undesirable side effects of systemic levels hydrogels (HGs) of poloxamer and carbomer were developed.

Methods: KT poloxamer based HG (KT-P407-HG) and KT carbomer based HG (KT-C940-HG) were elaborated and characterized in terms of swelling, degradation, porosity, rheology, stability, in vitro release, ex vivo permeation and distribution skin layers. Finally, in vivo anti-inflammatory efficacy and skin tolerance were also assessed.

View Article and Find Full Text PDF

This study describes the development of semisolid formulations containing doxepin (DOX) for pain relief in oral mucositis, frequently related to chemotherapy and/or radiotherapy treatments in patients with head and neck cancer. Chemical permeation enhancers were evaluated and selected according to the results obtained from rheological studies, drug release, and drug permeation and retention through buccal mucosa. Finally, the selected formulation was compared in vivo, with a reference DOX mouthwash, whose clinical efficacy had been previously reported.

View Article and Find Full Text PDF

Multiple emulsions have attracted considerable attention in recent years for application as potential delivery systems for different drugs. The aim of the present work is to design a new formulation containing clotrimazole (CLT) loaded into multiple emulsions by two-step emulsification method for transdermal delivery. Different ingredients and quantities like primary and secondary co-emulsifiers and the nature of oily phase were assayed in order to optimize the best system for good.

View Article and Find Full Text PDF

Purpose: Melatonin (MLT) could be candidate drug for treatment of several diseases because of its high antioxidant and anticarcinogenic activity and its important biological roles. The aim of this study was to assess the influence of different vehicles on the permeation of MLT through buccal and skin tissues.

Methods: Formulations were characterized in terms of rheology, drug release and permeation through human skin as well as porcine buccal mucosa.

View Article and Find Full Text PDF