Publications by authors named "Lycett G"

Most embedding media for live and fixed samples were not designed for microscopy and have issues including long polymerization times, peak of toxicity toward the sample during the sol-gel transition, and irreversibility of this transition. Gels derived from biological sources are widely used in microscopy, but their precise composition is ill-defined and can vary between batches. Non-physiological temperatures and/or specific enzymatic solutions are often needed to revert the gel back to the sol state to allow sample recovery.

View Article and Find Full Text PDF
Article Synopsis
  • - The control of gene expression is crucial for genetic engineering, especially for manipulating pests like mosquitoes, but current methods lack reliable data in nonmodel insect species.
  • - Researchers have found that using RNA polymerase II promoters limits options for gene expression control, prompting the need for new strategies.
  • - A new systematic approach was developed to modify translation initiation sequences and 3' UTRs, successfully creating a toolbox that allows for predictable gene expression changes in mosquitoes, enhancing genetic tools for pest management.
View Article and Find Full Text PDF

With the spread of resistance to long-established insecticides targeting malaria vectors, understanding the actions of compounds newly identified for vector control is essential. With new commercial vector-control products containing neonicotinoids under development, we investigate the actions of 6 neonicotinoids (imidacloprid, thiacloprid, clothianidin, dinotefuran, nitenpyram and acetamiprid) on 13 nicotinic acetylcholine receptor (nAChR) subtypes produced by expression of combinations of the Ag1, Ag2, Ag3, Ag8 and Ag1 subunits in oocytes, the orthologues of which we have previously shown to be important in neonicotinoid actions. The presence of the Ag2 subunit reduces neonicotinoid affinity for the mosquito nAChRs, whereas the Ag3 subunit increases it.

View Article and Find Full Text PDF

Insecticide resistance is a serious threat to our ability to control mosquito vectors which transmit pathogens including malaria parasites and arboviruses. Understanding the underlying mechanisms is an essential first step in tackling the challenges presented by resistance. This study aimed to functionally characterise the carboxylesterase, CCEae3A, the elevated expression of which has been implicated in temephos resistance in Aedes aegypti and Aedes albopictus larvae.

View Article and Find Full Text PDF
Article Synopsis
  • - Contact insecticides like deltamethrin are used to control malaria-carrying Anopheles mosquitoes, with ABCH2 protein in their legs playing a significant role in insecticide resistance by affecting how well the insecticide penetrates.
  • - Silencing the ABCH2 gene in mosquitoes increased their mortality from deltamethrin, indicating that ABCH2 helps regulate the insecticide's penetration rather than impacting the transport of hydrocarbons in their legs.
  • - Research identified that ABCH2 functions as a half-transporter that can pump deltamethrin out of the mosquito, involving ATP hydrolysis, which supports the idea that this protein is a target for deltamethrin and affects toxicity regulation.
View Article and Find Full Text PDF

Mosquito-borne viruses including dengue, Zika, and Chikungunya viruses, and parasites such as malaria and endanger health and economic security around the globe, and emerging mosquito-borne pathogens have pandemic potential. However, the rapid spread of insecticide resistance threatens our ability to control mosquito vectors. Larvae of were screened with the Medicines for Malaria Venture Pandemic Response Box, an open-source compound library, using INVAPP, an invertebrate automated phenotyping platform suited to high-throughput chemical screening of larval motility.

View Article and Find Full Text PDF

Insecticide resistance in Anopheles mosquitoes is a major obstacle in maintaining the momentum in reducing the malaria burden; mitigating strategies require improved understanding of the underlying mechanisms. Mutations in the target site of insecticides (the voltage gated sodium channel for the most widely used pyrethroid class) and over-expression of detoxification enzymes are commonly reported, but their relative contribution to phenotypic resistance remain poorly understood. Here we present a genome editing pipeline to introduce single nucleotide polymorphisms in An.

View Article and Find Full Text PDF

Pyrethroid-impregnated nets have contributed significantly to halving the burden of malaria but resistance threatens their future efficacy and the pipeline of new insecticides is short. Here we report that an invertebrate automated phenotyping platform (INVAPP), combined with the algorithm Paragon, provides a robust system for measuring larval motility in Anopheles gambiae (and An. coluzzi) as well as Aedes aegypti with the capacity for high-throughput screening for new larvicides.

View Article and Find Full Text PDF
Article Synopsis
  • The GAL4-UAS system is a genetic analysis tool that allows researchers to study gene function by controlling the expression of specific genes in a tissue-specific manner using a two-step crossing of transgenic lines.
  • This system is flexible and can be applied to various tissues, making it useful for examining the effects of gene manipulation, even when it affects the fitness of the organism.
  • The article discusses its adaptation for the malaria vector Anopheles gambiae, outlines procedures for creating and analyzing GAL4-UAS lines, and includes detailed protocols for genetic crosses and embryonic development studies, as well as suggestions for enhancing the system using CRISPR/Cas9.
View Article and Find Full Text PDF

Functional genomic analysis and related strategies for genetic control of malaria rely on validated and reproducible methods to accurately modify the genome of Anopheles mosquitoes. Amongst these methods, the φC31 system allows precise and stable site-directed integration of transgenes, or the substitution of integrated transgenic cassettes via recombinase-mediated cassette exchange (RMCE). This method relies on the action of the Streptomyces φC31 bacteriophage integrase to catalyze recombination between two specific attachment sites designated attP (derived from the phage) and attB (derived from the host bacterium).

View Article and Find Full Text PDF

Fenazaquin, pyridaben, tolfenpyrad and fenpyroximate are Complex I inhibitors offering a new mode of action for insecticidal malaria vector control. However, extended exposure to pyrethroid based products such as long-lasting insecticidal nets (LLINs) has created mosquito populations that are largely pyrethroid-resistant, often with elevated levels of P450s that can metabolise and neutralise diverse substrates. To assess cross-resistance liabilities of the Complex I inhibitors, we profiled their susceptibility to metabolism by P450s associated with pyrethroid resistance in Anopheles gambiae (CYPs 6M2, 6P3, 6P4, 6P5, 9J5, 9K1, 6Z2) and An.

View Article and Find Full Text PDF

Background: There has been no evidence of transmission of mosquito-borne arboviruses of equine or human health concern to date in the UK. However, in recent years there have been a number of outbreaks of viral diseases spread by vectors in Europe. These events, in conjunction with increasing rates of globalisation and climate change, have led to concern over the future risk of mosquito-borne viral disease outbreaks in northern Europe and have highlighted the importance of being prepared for potential disease outbreaks.

View Article and Find Full Text PDF

Mosquito-borne Zika virus (ZIKV) transmission has almost exclusively been detected in the tropics despite the distributions of its primary vectors extending farther into temperate regions. Therefore, it is unknown whether ZIKV's range has reached a temperature-dependent limit, or if it can spread into temperate climates. Using field-collected mosquitoes for biological relevance, we found that two common temperate mosquito species, and , were competent for ZIKV.

View Article and Find Full Text PDF

The surface of insects is coated in cuticular hydrocarbons (CHCs); variations in the composition of this layer affect a range of traits including adaptation to arid environments and defence against pathogens and toxins. In the African malaria vector, quantitative and qualitative variance in CHC composition have been associated with speciation, ecological habitat and insecticide resistance. Understanding how these modifications arise will inform us of how mosquitoes are responding to climate change and vector control interventions.

View Article and Find Full Text PDF

The Rab GTPase family plays a vital role in several plant physiological processes including fruit ripening. Fruit softening during ripening involves trafficking of cell wall polymers and enzymes between cellular compartments. Mango, an economically important fruit crop, is known for its delicious taste, exotic flavour and nutritional value.

View Article and Find Full Text PDF

Pyrethroid-impregnated bed nets have driven considerable reductions in malaria-associated morbidity and mortality in Africa since the beginning of the century. The intense selection pressure exerted by bed nets has precipitated widespread and escalating resistance to pyrethroids in African Anopheles populations, threatening to reverse the gains that been made by malaria control. Here we show that expression of a sensory appendage protein (SAP2), which is enriched in the legs, confers pyrethroid resistance to Anopheles gambiae.

View Article and Find Full Text PDF

Resistance in to members of all 4 major classes (pyrethroids, carbamates, organochlorines, and organophosphates) of public health insecticides limits effective control of malaria transmission in Africa. Increase in expression of detoxifying enzymes has been associated with insecticide resistance, but their direct functional validation in is still lacking. Here, we perform transgenic analysis using the GAL4/UAS system to examine insecticide resistance phenotypes conferred by increased expression of the 3 genes-, , and -most often found up-regulated in resistant We report evidence in that organophosphate and organochlorine resistance is conferred by overexpression of GSTE2 in a broad tissue profile.

View Article and Find Full Text PDF

Cuticular hydrocarbon (CHC) biosynthesis is a major pathway of insect physiology. In Drosophila melanogaster the cytochrome P450 CYP4G1 catalyses the insect-specific oxidative decarbonylation step, while in the malaria vector Anopheles gambiae, two CYP4G paralogues, CYP4G16 and CYP4G17 are present. Analysis of the subcellular localization of CYP4G17 and CYP4G16 in larval and pupal stages revealed that CYP4G16 preserves its PM localization across developmental stages analyzed; however CYPG17 is differentially localized in two distinct types of pupal oenocytes, presumably oenocytes of larval and adult developmental specificity.

View Article and Find Full Text PDF

Anopheles is the only genus of mosquitoes that transmit human malaria and consequently the focus of large scale genome and transcriptome-wide association studies. Genetic tools to define the function of the candidate genes arising from these analyses are vital. Moreover, genome editing offers the potential to modify Anopheles population structure at local and global scale to provide complementary tools towards the ultimate goal of malaria elimination.

View Article and Find Full Text PDF

Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science.

View Article and Find Full Text PDF

Fruit ripening is a complex developmental process that involves the synthesis and modification of the cell wall leading up to the formation of an edible fruit. During the period of fruit ripening, new cell wall polymers and enzymes are synthesized and trafficked to the apoplast. Vesicle trafficking has been shown to play a key role in facilitating the synthesis and modification of cell walls in fruits.

View Article and Find Full Text PDF

The mosquito Anopheles gambiae is the principal vector for malaria in sub-Saharan Africa. The ability of A. gambiae to transmit malaria is strictly related to blood feeding and digestion, which releases nutrients for oogenesis, as well as substantial amounts of highly toxic free heme.

View Article and Find Full Text PDF

The ability to manipulate the Anopheles gambiae genome and alter gene expression effectively and reproducibly is a prerequisite for functional genetic analysis and for the development of novel control strategies in this important disease vector. However, in vivo transgenic analysis in mosquitoes is limited by the lack of promoters active ubiquitously. To address this, we used the GAL4/UAS system to investigate the promoter of the An.

View Article and Find Full Text PDF

The role of ATP-binding cassette (ABC) transporters in conferring insecticide resistance has received much attention recently. Here we identify ABC transporters differentially expressed in insecticide-resistant populations of the malaria vector, Anopheles gambiae. Although we found little evidence that the orthologues of the multidrug resistance proteins described in other species are associated with resistance in An.

View Article and Find Full Text PDF