Publications by authors named "Lyamzaev K"

Tissue specificity can render mitochondrial uncouplers more promising as leading compounds for creating drugs against serious diseases. In search of tissue-specific uncouplers, we address anilinothiophenes as possible glutathione-S-transferase substrates (GST). Earlier, 'cyclic' uncoupling activity was reported for 5-bromo-N-(4-chlorophenyl)-3,4-dinitro-2-thiophenamine (BDCT) in isolated rat liver mitochondria (RLM).

View Article and Find Full Text PDF

Ferroptosis, a form of regulated cell death mediated by lipid peroxidation (LPO), has become the subject of intense research due to its potential therapeutic applications in cancer chemotherapy as well as its pathophysiological role in ischemic organ injury. The role of mitochondrial lipid peroxidation (LPO) in ferroptosis remains poorly understood. We show that supplementation of exogenous iron in the form of ferric ammonium citrate (FAC) in combination with buthionine sulfoximine (BSO, an inhibitor of glutathione biosynthesis) induces mitochondrial lipid peroxidation that precedes ferroptosis in normal human fibroblasts.

View Article and Find Full Text PDF

Aims: Study of the role of mitochondria-generated reactive oxygen species (mtROS) and mitochondrial polarization in mitochondrial fragmentation at the initial stages of myogenesis.

Main Methods: Mitochondrial morphology, Drp1 protein phosphorylation, mitochondrial electron transport chain components content, mtROS and mitochondrial lipid peroxidation levels, and mitochondrial polarization were evaluated on days 1 and 2 of human MB135 myoblasts differentiation. A mitochondria-targeted antioxidant SkQ1 was used to elucidate the effect of mtROS on mitochondria.

View Article and Find Full Text PDF

Lipid peroxidation plays an important role in various pathologies and aging, at least partially mediated by ferroptosis. The role of mitochondrial lipid peroxidation during ferroptosis remains poorly understood. We show that supplementation of exogenous iron in the form of ferric ammonium citrate at submillimolar doses induces production of reactive oxygen species (ROS) and lipid peroxidation in mitochondria that precede ferroptosis in H9c2 cardiomyocytes.

View Article and Find Full Text PDF

Quinone derivatives of triphenylphosphonium have proven themselves to be effective geroprotectors and antioxidants that prevent oxidation of cell components with participation of active free radicals - peroxide (RO·), alkoxy (RO·), and alkyl (R·) radicals, as well as reactive oxygen species (superoxide anion, singlet oxygen). Their most studied representatives are derivatives of plastoquinone (SkQ1) and ubiquinone (MitoQ), which in addition to antioxidant properties also have a strong antibacterial effect. In this study, we investigated antibacterial properties of other quinone derivatives based on decyltriphenylphosphonium (SkQ3, SkQT, and SkQThy).

View Article and Find Full Text PDF

Mitochondrial uncouplers are actively sought as potential therapeutics. Here, we report the first successful synthesis of mitochondria-targeted derivatives of the highly potent uncoupler 3,5-di-butyl-4-hydroxybenzylidene-malononitrile (SF6847), bearing a cationic alkyl(triphenyl)phosphonium (TPP) group. As a key step of the synthesis, we used condensation of a ketophenol with malononitrile via the Knoevenagel reaction.

View Article and Find Full Text PDF

Neutrophils play a primary role in protecting our body from pathogens. When confronted with invading bacteria, neutrophils begin to produce leukotriene B4, a potent chemoattractant that, in cooperation with the primary bacterial chemoattractant fMLP, stimulates the formation of swarms of neutrophils surrounding pathogens. Here we describe a complex redox regulation that either stimulates or inhibits fMLP-induced leukotriene synthesis in an experimental model of neutrophils interacting with .

View Article and Find Full Text PDF

We have recently discovered that ester-stabilized phosphorus ylides, resulting from deprotonation of a phosphonium salt such as [Ph3PCH2COOR], can transfer protons across artificial and biological membranes. To create more effective cationic protonophores, we synthesized similar phosphonium salts with one ((heptyloxycarbonylmethyl)(p-tolyl)bromide) or two ((butyloxycarbonylmethyl)(3,5-xylyl)osphonium bromide) methyl substituents in the phenyl groups. The methylation enormously augmented both protonophoric activity of the ylides on planar bilayer lipid membrane (BLM) and uncoupling of mammalian mitochondria, which correlated with strongly accelerated flip-flop of their cationic precursors across the BLM.

View Article and Find Full Text PDF

Ferroptosis is a regulated form of necrotic cell death reliant on iron-catalyzed lipid peroxidation. Although the precise involvement of mitochondria in ferroptosis remains incompletely elucidated, recent research indicates that mitochondrial oxidative events wield a pivotal influence in this mechanism. This article centers on the most recent discoveries, spotlighting the significance of mitochondrial lipid peroxidation in the occurrence of ferroptosis.

View Article and Find Full Text PDF

Cellular respiration is associated with at least six distinct but intertwined biological functions. (1) biosynthesis of ATP from ADP and inorganic phosphate, (2) consumption of respiratory substrates, (3) support of membrane transport, (4) conversion of respiratory energy to heat, (5) removal of oxygen to prevent oxidative damage, and (6) generation of reactive oxygen species (ROS) as signaling molecules. Here we focus on function #6, which helps the organism control its mitochondria.

View Article and Find Full Text PDF

Oxidative stress nearly always accompanies all stages of cancer development. At the early stages, antioxidants may help to reduce reactive oxygen species (ROS) production and exhibit anticarcinogenic effects. In the later stages, ROS involvement becomes more complex.

View Article and Find Full Text PDF

The response to stress involves the activation of pathways leading either to protection from the stress origin, eventually resulting in development of stress resistance, or activation of the rapid death of the organism. Here we hypothesize that mitochondrial reactive oxygen species (mtROS) play a key role in stress-induced programmed death of the organism, which we called "phenoptosis" in 1997. We demonstrate that the synthetic mitochondria-targeted antioxidant SkQ1 (which specifically abolishes mtROS) prevents rapid death of mice caused by four mechanistically very different shocks: (a) bacterial lipopolysaccharide (LPS) shock, (b) shock in response to intravenous mitochondrial injection, (c) cold shock, and (d) toxic shock caused by the penetrating cation CTPP.

View Article and Find Full Text PDF

Ferroptosis induced by erastin (an inhibitor of cystine transport) and butionine sulfoximine (an inhibitor of glutathione biosynthesis) was prevented by the mitochondria-targeted antioxidants SkQ1 and MitoTEMPO. These effects correlate with the prevention of mitochondrial lipid peroxidation, which precedes cell death. Methylene blue, a redox agent that inhibits the production of reactive oxygen species (ROS) in complex I of the mitochondrial electron transport chain, also inhibits ferroptosis and mitochondrial lipid peroxidation.

View Article and Find Full Text PDF

The hypothesis is proposed that activation of innate immunity is the primary mechanism of phenoptosis (programmed death of an organism). In support of the hypothesis, we discuss (i) the data on active release of signaling molecules from the cell producing excessive inflammation; (ii) the data on contribution of mitochondrial production of reactive oxygen species to immune response.

View Article and Find Full Text PDF

Triphenylphosphonium ylides are commonly used as key intermediates in the Wittig reaction. Based on the known acidities of stabilized ylide precursors, we proposed that a methylene group adjacent to phosphorus in these compounds can ensure proton shuttling across lipid membranes. Here, we synthesized (decyloxycarbonylmethyl)triphenylphosphonium bromide (CMTPP-C) by reaction of triphenylphosphine with decyl bromoacetate.

View Article and Find Full Text PDF

An impressive body of evidence has been accumulated now on sound beneficial effects of mitochondrial uncouplers in struggling with the most dangerous pathologies such as cancer, infective diseases, neurodegeneration and obesity. To increase their efficacy while gaining further insight in the mechanism of the uncoupling action has been remaining a challenge. Encouraged by our previous promising results on lipophilic derivatives of 7-hydroxycoumarin-4-acetic acid (UB-4 esters), here, we use a 7-hydroxycoumarin-3-carboxylic acid scaffold to synthesize a new series of 7-hydroxycoumarin (umbelliferone, UB)-derived uncouplers of oxidative phosphorylation - alkyl esters of umbelliferone-3-carboxylic acid (UB-3 esters) with varying carbon chain length.

View Article and Find Full Text PDF

Purpose: To study the capabilities of electrophysiological and psychophysical examination methods for assessment of the functional state of ganglion cells, retina and optic nerve in patients with hereditary optic neuropathy (HON).

Material And Methods: The study included 60 patients (118 eyes) with a genetically confirmed diagnosis of HON. All study patients underwent visual field test (VFT), spectral optical coherence tomography (OCT), flash and pattern visual evoked potentials (VEP) (Flash-VEP, FVEP; Pattern-VEP, PVEP), photopic electroretinography with photonegative response (PhNR) registration and the color vision test.

View Article and Find Full Text PDF

Mitochondria are dynamic organelles that regulate various intracellular signaling pathways, including the mechanisms of programmed cell death, differentiation, inflammation, and so on. Mitochondria may be extruded as membrane enveloped or as free organelles during developmental processes, inflammatory activation, and in the process of "garbage clearance" of damaged mitochondria in postmitotic cells. Extracellular mitochondria can be engulfed by immune and nonimmune cells and trigger intracellular signaling leading to an inflammatory response.

View Article and Find Full Text PDF

In 1999 V. P. Skulachev proposed the term "mitoptosis" to refer to the programmed elimination of mitochondria in living cells.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

The existence of a complete oxidative phosphorylation system (OXPHOS) supercomplex including both electron transport system and ATP synthases has long been assumed based on functional evidence. However, no structural confirmation of the docking between ATP synthase and proton pumps has been obtained. In this study, cryo-electron tomography was used to reveal the supramolecular architecture of the rat heart mitochondria cristae during ATP synthesis.

View Article and Find Full Text PDF

An increase in the production of reactive oxygen species (ROS) in mitochondria due to targeted delivery of redox active compounds may be useful in studies of modulation of cell functions by mitochondrial ROS. Recently, the mitochondria-targeted derivative of menadione (MitoK) was synthesized. However, MitoK did not induce mitochondrial ROS production and lipid peroxidation while exerting significant cytotoxic action.

View Article and Find Full Text PDF

SESN2 is a member of the evolutionarily conserved sestrin protein family found in most of the Metazoa species. The SESN2 gene is transcriptionally activated by many stress factors, including metabolic derangements, reactive oxygen species (ROS), and DNA-damage. As a result, SESN2 controls ROS accumulation, metabolism, and cell viability.

View Article and Find Full Text PDF