Rational vaccine development and evaluation requires identifying and measuring the magnitude of epitope-specific CD8 T cell responses. However, conventional CD8 T cell epitope discovery methods are labor intensive and do not scale well. In this study, we accelerate this process by using an ultradense peptide array as a high-throughput tool for screening peptides to identify putative novel epitopes.
View Article and Find Full Text PDFConsiderable efforts have been made to develop technologies for selection of peptidic molecules that act as substrates or binders to a protein of interest. Here we demonstrate the combination of rational peptide array library design, parallel screening and stepwise evolution, to discover novel peptide hotspots. These hotspots can be systematically evolved to create high-affinity, high-specificity binding peptides to a protein target in a reproducible and digitally controlled process.
View Article and Find Full Text PDFMicrobial transglutaminases (MTGs) catalyze the formation of Gln-Lys isopeptide bonds and are widely used for the cross-linking of proteins and peptides in food and biotechnological applications ( to improve the texture of protein-rich foods or in generating antibody-drug conjugates). Currently used MTGs have low substrate specificity, impeding their biotechnological use as enzymes that do not cross-react with nontarget substrates ( as bio-orthogonal labeling systems). Here, we report the discovery of an MTG from (KalbTG), which exhibited no cross-reactivity with known MTG substrates or commonly used target proteins, such as antibodies.
View Article and Find Full Text PDFRNA accessible sites are the regions in an RNA molecule that are available for hybridization with cDNA or RNA molecules. The identification of these accessible sites is a critical first step in identifying antisense-mediated gene suppression sites, as well as in a variety of other RNA-based analysis methods. Here, we present a rapid, hybridization-based, label-free method of identifying RNA accessible sites with surface plasmon resonance imaging (SPRi) on in situ synthesized oligonucleotide arrays prepared on carbon-on-metal substrates.
View Article and Find Full Text PDFWe report here on the development and validation of a prototype Invader Plus method for the qualitative detection of herpes simplex virus types 1 and 2 in cerebrospinal fluid (CSF). The method combines PCR and Invader techniques in a single, closed-tube, continuous-reaction format that gives an analytical sensitivity of approximately 10 copies per reaction. The clinical sensitivity and specificity were 100.
View Article and Find Full Text PDFThe short lengths of microRNAs (miRNAs) present a significant challenge for detection and quantitation using conventional methods for RNA analysis. To address this problem, we developed a quantitative, sensitive, and rapid miRNA assay based on our previously described messenger RNA Invader assay. This assay was used successfully in the analysis of several miRNAs, using as little as 50-100 ng of total cellular RNA or as few as 1,000 lysed cells.
View Article and Find Full Text PDFHere we report proof-of-principle for a microsphere-based genotyping assay that detects single nucleotide polymorphisms (SNPs) directly from human genomic DNA samples. This assay is based on a structure-specific cleavage reaction that achieves single base discrimination with a 5'-nuclease which recognizes a tripartite substrate formed upon hybridization of target DNA with probe and upstream oligonucleotides. The assay is simple with two easy steps: a cleavage reaction, which generates fluorescent signal on microsphere surfaces, followed by flow cytometry analysis of the microspheres.
View Article and Find Full Text PDFStructure-specific 5' nucleases play an important role in DNA replication and repair uniquely recognizing an overlap flap DNA substrate and processing it into a DNA nick. However, in the absence of a high-resolution structure of the enzyme/DNA complex, the mechanism underlying this recognition and substrate specificity, which is key to the enzyme's function, remains unclear. Here, we propose a three-dimensional model of the structure-specific 5' flap endonuclease from Pyrococcus furiosus in its complex with DNA.
View Article and Find Full Text PDFA new configuration of the solid-support invasive cleavage reaction provides a small reaction-volume format for high-sensitivity discrimination of nucleic acid targets with single nucleotide differences. With target concentrations as low as 2 amol/assay, the solid-support invasive cleavage reaction clearly distinguishes single base mutations. Two oligonucleotides tethered to the solid support hybridize to the target nucleic acid, forming a tripartite substrate that can be recognized and cleaved by Cleavase, a structure-specific 5'-nuclease.
View Article and Find Full Text PDFExpert Rev Mol Diagn
September 2002
Concomitant advances made by the Human Genome Project and in the development of nucleic acid screening technologies are driving the expansion of pharmacogenomic research and molecular diagnostics. However, most current technologies are restrictive due to their complexity and/or cost, limiting the potential of personalized medicine. The invader assay, which can be used for genotyping as well as for gene expression monitoring without the need for intervening target amplification steps, presents an immediate solution that is accurate, simple to use, scaleable and cost-effective.
View Article and Find Full Text PDFThe structure-specific invasive cleavage reaction is a useful means for sensitive and specific detection of single nucleotide polymorphisms, or SNPs, directly from genomic DNA without a need for prior target amplification. A new approach integrating this invasive cleavage assay and surface DNA array technology has been developed for potentially large-scale SNP scoring in a parallel format. Two surface invasive cleavage reaction strategies were designed and implemented for a model SNP system in codon 158 of the human ApoE gene.
View Article and Find Full Text PDFThe structure-specific invasive cleavage of single-stranded DNA by 5' nucleases is a useful means for sensitive detection of single-nucleotide polymorphisms or SNPs. The solution-phase invasive cleavage reaction has sufficient sensitivity for direct detection of as few as 600 target molecules with no prior target amplification. One approach to the parallelization of SNP analysis is to adapt the invasive cleavage reaction to an addressed array format.
View Article and Find Full Text PDFUsing microparticles as the capture surface and fluorescence resonance energy transfer as the detection technology, we have demonstrated the feasibility of performing the invasive cleavage reaction on a solid phase. An effective tool for many genomic applications, the solution phase invasive cleavage assay is a signal amplification method capable of distinguishing nucleic acids that differ by only a single base mutation. The method positions two overlapping oligonucleotides, the probe and upstream oligonucleotides, on the target nucleic acid to create a complex recognized and cleaved by a structure-specific 5'-nuclease.
View Article and Find Full Text PDFDNA sequence analysis by oligonucleotide binding is often affected by interference with the secondary structure of the target DNA. Here we describe an approach that improves DNA secondary structure prediction by combining enzymatic probing of DNA by structure-specific 5'-nucleases with an energy minimization algorithm that utilizes the 5'-nuclease cleavage sites as constraints. The method can identify structural differences between two DNA molecules caused by minor sequence variations such as a single nucleotide mutation.
View Article and Find Full Text PDFRNA quantitation is becoming increasingly important in basic, pharmaceutical, and clinical research. For example, quantitation of viral RNAs can predict disease progression and therapeutic efficacy. Likewise, gene expression analysis of diseased versus normal, or untreated versus treated, tissue can identify relevant biological responses or assess the effects of pharmacological agents.
View Article and Find Full Text PDFA rapid and simple method for determining accessible sites in RNA that is independent of the length of target RNA and does not require RNA labeling is described. In this method, target RNA is allowed to hybridize with sequence-randomized libraries of DNA oligonucleotides linked to a common tag sequence at their 5'-end. Annealed oligonucleotides are extended with reverse transcriptase and the extended products are then amplified by using PCR with a primer corresponding to the tag sequence and a second primer specific to the target RNA sequence.
View Article and Find Full Text PDFThe invasive signal amplification reaction is a sensitive method for single nucleotide polymorphism detection and quantitative determination of viral load and gene expression. The method requires the adjacent binding of upstream and downstream oligonucleotides to a target nucleic acid (either DNA or RNA) to form a specific substrate for the structure-specific 5' nucleases that cleave the downstream oligonucleotide to generate signal. By running the reaction at an elevated temperature, the downstream oligonucleotide cycles on and off the target leading to multiple cleavage events per target molecule without temperature cycling.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2000
The invasive signal amplification reaction has been previously developed for quantitative detection of nucleic acids and discrimination of single-nucleotide polymorphisms. Here we describe a method that couples two invasive reactions into a serial isothermal homogeneous assay using fluorescence resonance energy transfer detection. The serial version of the assay generates more than 10(7) reporter molecules for each molecule of target DNA in a 4-h reaction; this sensitivity, coupled with the exquisite specificity of the reaction, is sufficient for direct detection of less than 1,000 target molecules with no prior target amplification.
View Article and Find Full Text PDFDNA replication and repair require a specific mechanism to join the 3'- and 5'-ends of two strands to maintain DNA continuity. In order to understand the details of this process, we studied the activity of the 5' nucleases with substrates containing an RNA template strand. By comparing the eubacterial and archaeal 5' nucleases, we show that the polymerase domain of the eubacterial enzymes is critical for the activity of the 5' nuclease domain on RNA containing substrates.
View Article and Find Full Text PDFThe formation of a duplex between two nucleic acid strands is restricted if one of the strands forms an intra- or intermolecular secondary structure. The formation of the new duplex requires the dissociation and replacement of the initial structure. To understand the mechanism of this type of kinetics we studied the replacement of a labeled DNA oligonucleotide probe bound to a complementary DNA target with an unlabeled probe of the same sequence.
View Article and Find Full Text PDFThe Invader technology has been developed for the detection of nucleic acids. It is a signal amplification system able to accurately quantify DNA and RNA targets with high sensitivity. Exquisite specificity is achieved by combining hybridization with enzyme recognition, which provides the ability to discriminate mutant from wild-type at ratios greater than 1/1000 (mutant/wt).
View Article and Find Full Text PDFThe 5'-exonuclease domains of the DNA polymerase I proteins of Eubacteria and the FEN1 proteins of Eukarya and Archaea are members of a family of structure-specific 5'-exonucleases with similar function but limited sequence similarity. Their physiological role is to remove the displaced 5' strands created by DNA polymerase during displacement synthesis, thereby creating a substrate for DNA ligase. In this paper, we define the substrate requirements for the 5'-exonuclease enzymes from Thermus aquaticus, Thermus thermophilus, Archaeoglobus fulgidus, Pyrococcus furiosus, Methanococcus jannaschii, and Methanobacterium thermoautotrophicum.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 1999
Many eubacterial DNA polymerases are bifunctional molecules having both polymerization (P) and 5' nuclease (N) activities, which are contained in separable domains. We previously showed that the DNA polymerase I of Thermus aquaticus (TaqNP) endonucleolytically cleaves DNA substrates, releasing unpaired 5' arms of bifurcated duplexes. Here, we compare the substrate specificities of TaqNP and the isolated 5' nuclease domain of this enzyme, TaqN.
View Article and Find Full Text PDF