Publications by authors named "Ly Binh An Tran"

During a first-in-humans clinical trial investigating electron paramagnetic resonance tumor oximetry, a patient injected with the particulate oxygen sensor Printex ink was found to have unexpected fluorodeoxyglucose (FDG) uptake in a dermal nodule via positron emission tomography (PET). This nodule co-localized with the Printex ink injection; biopsy of the area, due to concern for malignancy, revealed findings consistent with ink and an associated inflammatory reaction. Investigations were subsequently performed to assess the impact of oxygen sensors on FDG-PET/CT imaging.

View Article and Find Full Text PDF

Tumour hypoxia is a well-established factor of resistance in radiation therapy (RT). Myo-inositol trispyrophosphate (ITPP) is an allosteric effector that reduces the oxygen-binding affinity of haemoglobin and facilitates the release of oxygen by red blood cells. We investigated herein the oxygenation effect of ITPP in six tumour models and its radiosensitizing effect in two of these models.

View Article and Find Full Text PDF

Objectives: Electron paramagnetic resonance (EPR) oximetry using particulate materials allows repeatable measurements of oxygen in tissues. However, the materials identified so far are not medical devices, thus precluding their immediate use in clinical studies. The aim of this study was to assess the magnetic properties of Carbo-Rep, a charcoal suspension used as a liquid marker for preoperative tumor localization.

View Article and Find Full Text PDF

Purpose: In an effort to develop noninvasive in vivo methods for mapping tumor oxygenation, magnetic resonance (MR)-derived parameters are being considered, including global R1, water R1, lipids R1, and R2*. R1 is sensitive to dissolved molecular oxygen, whereas R2* is sensitive to blood oxygenation, detecting changes in dHb. This work compares global R1, water R1, lipids R1, and R2* with pO2 assessed by electron paramagnetic resonance (EPR) oximetry, as potential markers of the outcome of radiation therapy (RT).

View Article and Find Full Text PDF

Early markers of treatment response may help in the management of patients by predicting the outcome of a specific therapeutic intervention. Here, we studied the potential value of diffusion-weighted MRI (DW-MRI) and (18)F-fluorothymidine ((18)F-FLT), markers of cell death and cell proliferation respectively, to predict the response to irradiation. In addition, dose escalation and/or carbogen breathing were used to modulate the response to irradiation.

View Article and Find Full Text PDF

Purpose: To assess the predictive value of hypoxia imaging by (18)F-FAZA PET in identifying tumors that may benefit from radiotherapy combined with nimorazole, a hypoxic radiosensitizer.

Material And Methods: Rats of two tumor models (Rhabdomyosarcoma and 9L-glioma) were divided into two treated groups: radiotherapy (RT) alone or RT plus nimorazole. (18)F-FAZA PET images were obtained to evaluate tumor hypoxia before the treatment.

View Article and Find Full Text PDF

Background And Purpose: Hypoxia-driven intervention (oxygen manipulation or dose escalation) could overcome radiation resistance linked to tumor hypoxia. Here, we evaluated the value of hypoxia imaging using (18)F-FAZA PET to predict the outcome and guide hypoxia-driven interventions.

Material And Methods: Two hypoxic rat tumor models were used: rhabdomyosarcoma and 9L-glioma.

View Article and Find Full Text PDF

Background And Purpose: (18)F-FAZA is a nitroimidazole PET tracer that can provide images of tumor hypoxia. However, it cannot provide absolute pO(2) values. To qualify (18)F-FAZA PET, we compared PET images to pO(2) measured by OxyLite, EPR oximetry and (19)F-MRI.

View Article and Find Full Text PDF