Background: The Functional Movement Screen (FMS) is widely recognized by clinicians and trainers as a valuable tool for the prediction and prevention of training injuries in sports population. However, some studies suggested that FMS may not fully meet the needs of professional athletes. To address this, the Modified Functional Movement Screen (MFMS) has been specifically developed for athletes.
View Article and Find Full Text PDFEpidemiological studies have shown a relatively strong association between occupational lower back pain (LBP) and long-term exposure to vibration. However, there is limited knowledge of the impact of vibration and sedentariness on bone metabolism of the lumbar vertebra and the mechanism of bone-derived LBP. The aim of this study was to investigate the effects of vibration in forced posture (a seated posture) on biochemical bone metabolism indices, and morphometric and mechanical properties of the lumbar vertebra, and provide a scientific theoretical basis for the mechanism of bone-derived LBP, serum levels of Ca(2+), (HPO4)(2-), tartrate-resistant acid phosphatase (TRAP), bone-specific alkaline phosphatase (BALP), and bone gla protein (BGP),the pathological changes and biomechanics of lumbar vertebra of New Zealand white rabbits were studied.
View Article and Find Full Text PDFFatigue is synonymous with a wide spectrum of familiar physiological conditions, from pathology and general health, to sport and physical exercise. Strenuous, prolonged exercise training causes fatigue. Although several studies have investigated the effects of electrical stimulation frequency on muscle fatigue, the effects of percutaneous pulse current stimulation on fatigue in the hepatic tissue of trained rats is still unclear.
View Article and Find Full Text PDF