Phosphodiesterase-4, the primary enzyme responsible for cAMP degradation in the majority of immune and inflammatory cells, plays a critical role in the regulation of intracellular cAMP levels. Consequently, small molecular entities capable of inhibiting PDE4 have been employed in the treatment of inflammation-associated disorders, such as chronic obstructive pulmonary disease (COPD), psoriasis, atopic dermatitis (AD), inflammatory bowel diseases (IBD), rheumatic arthritis (RA). In the present investigation, a multi-faceted approach was employed to identify novel PDE4 inhibitors, utilizing the co-crystallization structure of PDE4B available in the Protein Data Bank (PDB) database, drug-like screening, false positive filtration, similarity and ADMET screen, as well as molecular docking via multiple software platforms, in conjunction with bioactivity assays.
View Article and Find Full Text PDF