In ultrasound B-mode imaging, the axial resolution (AR) is commonly determined by the duration or bandwidth of an excitation signal. A shorter-duration pulse will produce better resolution compared to a longer one but with compromised penetration depth. Instead of relying on the pulse duration or bandwidth to improve the AR, an alternative method termed filtered multiply and sum (FMAS) has been introduced in our previous work.
View Article and Find Full Text PDFThe concept of employing air volumes trapped inside polymer shells to make a lens for ultrasound focusing in water is investigated. The proposed lenses use evenly-spaced concentric rings, each having an air-filled polymer shell construction, defining concentric water-filled channels. Numerical simulations and experiments have shown that a plane wave can be focused, and that the amplification can be boosted by Fabry-Pérot resonances within the water channels with an appropriate choice of the lens thickness.
View Article and Find Full Text PDFMetamaterials exhibiting Fabry-Pérot resonances are shown to achieve ultrasonic imaging of a sub-wavelength aperture in water immersion across a broad bandwidth. Holey-structured metamaterials of different thickness were additively manufactured using a tungsten substrate and selective laser melting, tungsten being chosen so as to create a significant acoustic impedance mismatch with water. Both broadband metamaterial behavior and sub-wavelength imaging in water are demonstrated experimentally and validated with finite element simulations over the 200-300 kHz range.
View Article and Find Full Text PDFCardiac function and vascular function are closely related to the flow of blood within. The flow velocities in these larger cavities easily reach 1 m/s, and generally complex spatiotemporal flow patterns are involved, especially in a non-physiologic state. Visualization of such flow patterns using ultrasound can be greatly enhanced by administration of contrast agents.
View Article and Find Full Text PDFAcoustic metamaterials constructed from conventional base materials can exhibit exotic phenomena not commonly found in nature, achieved by combining geometrical and resonance effects. However, the use of polymer-based metamaterials that could operate in water is difficult, due to the low acoustic impedance mismatch between water and polymers. Here we introduce the concept of "trapped air" metamaterial, fabricated via vat photopolymerization, which makes ultrasonic sub-wavelength imaging in water using polymeric metamaterials highly effective.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
February 2019
Combining diverging ultrasound waves and microbubbles could improve contrast-enhanced echocardiography (CEE), by providing enhanced temporal resolution for cardiac function assessment over a large imaging field of view. However, current image formation techniques using coherent summation of echoes from multiple steered diverging waves (DWs) are susceptible to tissue and microbubble motion artifacts, resulting in poor image quality. In this study, we used correlation-based 2-D motion estimation to perform motion compensation for CEE using DWs.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
July 2018
The capability of accumulating microbubbles using ultrasound could be beneficial for enhancing targeted drug delivery. When microbubbles are used to deliver a therapeutic payload, there is a need to track them, for a localized release of the payload. In this paper, a method for localizing microbubble accumulation with fast image guidance is presented.
View Article and Find Full Text PDF