Around 50% of the familial breast cancer (BC) cases are estimated to be caused by germline variants in known low-, moderate-, and high-risk susceptibility genes, while the other half is of unknown genetic origin. In the present study, we wanted to evaluate the role of the RECQ helicases, some of which have been studied in the past as candidates, with unclear results about their role in the disease. Using next-generation sequencing (NGS) technology, we analyzed the whole coding sequence of , , , , and in almost 2000 index cases from BC Spanish families that had previously tested negative for the known BC susceptibility genes (BRCAX) and compared the results with the controls extracted from gnomAD.
View Article and Find Full Text PDFThere is still around 50% of the familial breast cancer (BC) cases with an undefined genetic cause, here we have used next-generation sequencing (NGS) technology to identify new BC susceptibility genes. This approach has led to the identification of RECQL5, a member of RECQL-helicases family, as a new BC susceptibility candidate, which deserves further study. We have used a combination of whole exome sequencing in a family negative for mutations in BRCA1/2 throughout (BRCAX), in which we found a probably deleterious variant in RECQL5, and targeted NGS of the complete coding regions and exon-intron boundaries of the candidate gene in 699 BC Spanish BRCAX families and 665 controls.
View Article and Find Full Text PDF