Introduction: Pyogenic granuloma (PG) is a reactive inflammatory vascular lesion of the skin and mucous membranes, characterised by the presence of enlarged venules and seamed and seamless capillaries with plump endothelial cells (EC), and numerous macrophages. EC activation upregulates the synthesis of galectins and induces their translocation to the EC surface promoting angiogenesis and lymphangiogenesis, particularly galectin-1 (Gal-1), Gal-3 and Gal-8. However, the presence and distribution of Gal-1, -3 and -8, as well as their implications in the pathogenesis of PG, has not been considered.
View Article and Find Full Text PDFKeloids are defined histopathologically as an inflammatory disorder characterized by exhibiting numerous fibroblasts, abnormal vascularization, increased number of proinflammatory immune cells as well as uncontrolled cell proliferation, and exacerbated and disorganized deposition of extracellular matrix (ECM) molecules. Importantly, many of these ECM molecules display N- and O-linked glycan residues and are considered as potential targets for galectin-1 (Gal-1) and galectin-3 (Gal-3). Nevertheless, the presence and localization of Gal-1 and Gal-3 as well as the interactions with some of their binding partners in keloid tissues have not been considered.
View Article and Find Full Text PDFBackground: Actinic keratoses (AKs) are generally considered as premalignant skin lesions that can progress into squamous cell carcinoma (SCC) in situ and invasive SCC. However, its progression to SCC is still matter of debate. A transmembrane glycoprotein that contributes to the progression of certain premalignant and malignant lesions is mucin1 (MUC1).
View Article and Find Full Text PDFMucin 1 (MUC1) is a transmembrane glycoprotein that protects epithelial cells from injury caused by external stimuli. In addition to this role, MUC1 is involved in cell-cell adhesion, proliferation, motility, invasion and survival. In epithelial cells, MUC1 expression is regulated by binding of TNFα to TNFR1 and activation of the NFκB pathway.
View Article and Find Full Text PDFPulmonary vascular remodeling is a process generally associated with pulmonary hypertension that involves intimal thickening, medial hyperthrophy, and plexiform lesions. Morphological studies during pulmonary hypertension have indicated that intimal thickening consists of immature smooth muscle cells (SMCs) associated with determined extracellular matrix components, suggesting an important role for these cells in vascular lesions. Controversy exists regarding the nature and origin of the cells conforming the intimal thickenings.
View Article and Find Full Text PDF