Publications by authors named "Luz Maria De la Fuente"

This study assessed the capacity of leaf litters to adsorb copper ions applied as a copper-based pesticide. Leaf litters of two fruit tree species with different lignin/N ratios were examined to determine their protective role against the incorporation of Cu into soil. A leaf litter Cu-adsorption capacity assay and a degradation assay were performed using table grape (lignin/N = 2.

View Article and Find Full Text PDF

Interest in has increased as an alternative for assisted phytostabilization due to its spontaneous colonization of tailings dumps. The search for a novel fast-vegetative propagation technique to accelerate its coverage on mine tailings is a promising research area for sustainable mine closure plans. In this study, we determined the optimal proportion of compost and tailings as growing media to promote fast propagation through a compound layering technique.

View Article and Find Full Text PDF

Introduction: Acidic and metal(oid)-rich topsoils resulted after 34 years of continuous operations of a copper smelter in the Puchuncaví valley, central Chile. Currently, large-scale remediation actions for simultaneous in situ immobilization of metals and As are needed to reduce environmental risks of polluted soils. Aided phytostabilization is a cost-effective alternative, but adequate local available soil amendments have to be identified and management options have to be defined.

View Article and Find Full Text PDF

Pollution of soil with mine wastes results in both Cu enrichment and soil acidification. This confounding effect may be very important in terms of phytotoxicity, because pH is a key parameter influencing Cu solubility in soil solution. Laboratory toxicity tests were used to assess the effect of acidification by acidic mine wastes on Cu solubility and on root elongation of barley (Hordeum vulgare L.

View Article and Find Full Text PDF

A better understanding of exposure to and effects of copper-rich pollutants in soils is required for accurate environmental risk assessment of copper. A greenhouse experiment was conducted to study copper bioavailability and bioaccumulation in agricultural soils spiked with different types of copper-rich mine solid wastes (copper ore, tailing sand, smelter dust, and smelter slag) and copper concentrate. A copper salt (copper sulfate, CuSO4) that frequently is used to assess soil copper bioavailability and phytotoxicity also was included for comparison.

View Article and Find Full Text PDF