Publications by authors named "Luz E Tavera-Mendoza"

Article Synopsis
  • Many non-small-cell lung cancer (NSCLC) patients develop resistance to existing EGFR tyrosine kinase inhibitors (TKIs), particularly due to _C797S mutations that render osimertinib ineffective.
  • BLU-945 is a new orally available EGFR-TKI that effectively targets both activating and resistance mutations, including EGFR_C797S, showing significant potency while sparing healthy EGFR.
  • In preclinical and early clinical studies, BLU-945 demonstrated promising results, inhibiting tumor growth in resistant models and patients, suggesting it could be a viable treatment option for NSCLC patients who no longer respond to osimertinib.
View Article and Find Full Text PDF

Women in North America have a one in eight lifetime risk of developing breast cancer (BC), and a significant proportion of these individuals will develop recurrent BC and will eventually succumb to the disease. Metastatic, therapy-resistant BC cells are refractory to cell death induced by multiple stresses. Here, we document that the vitamin D receptor (VDR) acts as a master transcriptional regulator of autophagy.

View Article and Find Full Text PDF

Breast cancer is the most common type of cancer diagnosed in women, and the second most common cause of cancer-related deaths in women in North America. The use of laboratory mice in research is an essential tool for the study of breast cancer biology and for pre-clinical therapeutic development. While subcutaneous flank injections of cancer cells are widely used for studying breast cancer biology and for exploring novel therapies, orthotopic xenografting of tumors into the mouse mammary gland allow for the study of breast cancers in a biologically relevant microenvironment.

View Article and Find Full Text PDF

Vitamin D signaling regulates cell proliferation and differentiation, and epidemiological data suggest that it functions as a cancer chemopreventive agent, although the underlying mechanisms are poorly understood. Vitamin D signaling can suppress expression of genes regulated by c-MYC, a transcription factor that controls epidermal differentiation and cell proliferation and whose activity is frequently elevated in cancer. We show through cell- and animal-based studies and mathematical modeling that hormonal 1,25-dihydroxyvitamin D (1,25D) and the vitamin D receptor (VDR) profoundly alter, through multiple mechanisms, the balance in function of c-MYC and its antagonist the transcriptional repressor MAD1/MXD1.

View Article and Find Full Text PDF

Atrazine is the most commonly detected pesticide contaminant of ground water, surface water, and precipitation. Atrazine is also an endocrine disruptor that, among other effects, alters male reproductive tissues when animals are exposed during development. Here, we apply the nine so-called "Hill criteria" (Strength, Consistency, Specificity, Temporality, Biological Gradient, Plausibility, Coherence, Experiment, and Analogy) for establishing cause-effect relationships to examine the evidence for atrazine as an endocrine disruptor that demasculinizes and feminizes the gonads of male vertebrates.

View Article and Find Full Text PDF

Hormonal vitamin D, 1,25-dihydroxyvitamin D (1,25D), signals through the nuclear vitamin D receptor (VDR). 1,25D regulates cell proliferation and differentiation and has been identified as a cancer chemopreventive agent. FoxO proteins are transcription factors that control cell proliferation and survival.

View Article and Find Full Text PDF

Vitamin D signaling through its nuclear vitamin D receptor has emerged as a key regulator of innate immunity in humans. Here we show that hormonal vitamin D, 1,25-dihydroxyvitamin D(3), robustly stimulates expression of pattern recognition receptor NOD2/CARD15/IBD1 gene and protein in primary human monocytic and epithelial cells. The vitamin D receptor signals through distal enhancers in the NOD2 gene, whose function was validated by chromatin immunoprecipitation and chromatin conformation capture assays.

View Article and Find Full Text PDF

Ligand-dependent corepressor LCoR interacts with the progesterone receptor (PR) and estrogen receptor ERalpha in the presence of hormone. LCoR contains tandem N-terminal PXDLS motifs that recruit C-terminal-binding protein (CtBP) corepressors as well as a C-terminal helix-turn-helix (HTH) domain. Here, we analyzed the function of these domains in coregulation of PR- and ERalpha-regulated gene expression.

View Article and Find Full Text PDF

Ligand-dependent corepressor LCoR was identified as a protein that interacts with the estrogen receptor alpha (ERalpha) ligand binding domain in a hormone-dependent manner. LCoR also interacts directly with histone deacetylase 3 (HDAC3) and HDAC6. Notably, HDAC6 has emerged as a marker of breast cancer prognosis.

View Article and Find Full Text PDF

1,25-dihydroxyvitamin D(3) (1,25D) regulates gene expression by signaling through the nuclear vitamin D receptor (VDR) transcription factor and exhibits calcium homeostatic, anticancer, and immunomodulatory properties. Histone deacetylase inhibitors (HDACis) alter nuclear and cytoplasmic protein acetylation, modify gene expression, and have potential for treatment of cancer and other indications. The function of nuclear receptor ligands, including 1,25D, can be enhanced in combination with HDACi.

View Article and Find Full Text PDF

Large-scale genomics analyses have grown by leaps and bounds with the rapid advances in high throughput DNA sequencing and synthesis techniques. Nuclear receptor signaling is ideally suited to genomics studies because receptors function as ligand-regulated gene switches. This review will survey the strengths and limitations of three major classes of high throughput techniques widely used in the nuclear receptor field to characterize ligand-dependent gene regulation: expression profiling studies (microarrays, SAGE and related techniques), chromatin immunoprecipitation followed by microarray (ChIP-on-chip), and genome-wide in silico hormone response element screens.

View Article and Find Full Text PDF

INK4 proteins are members of a family of cyclin-dependent kinase (CDK) inhibitors that function in G(1) to block the activity of CDKs 4 and 6. While they share clear structural similarities, numerous studies have shown that INK4 proteins differ in their expression patterns during development and in the adult, and have differing roles in tumor suppression. A recent study from our laboratory showed that expression of the gene encoding p19(INK4D) is induced by the hormonal form of vitamin D(3) and by retinoids, both of which signal through related nuclear receptor transcription factors.

View Article and Find Full Text PDF

1alpha,25-Dihydroxyvitamin D3 [1,25(OH)2D3] regulates calcium homeostasis and controls cellular differentiation and proliferation. The vitamin D receptor (VDR) is a ligand-regulated transcription factor that recognizes cognate vitamin D response elements (VDREs) formed by direct or everted repeats of PuG(G/T)TCA motifs separated by 3 or 6 bp (DR3 or ER6). Here, we have identified direct 1,25(OH)2D3 target genes by combining 35,000+ gene microarrays and genome-wide screens for consensus DR3 and ER6 elements, and DR3 elements containing single nucleotide substitutions.

View Article and Find Full Text PDF