Publications by authors named "Luz Del Carmen Gomez-Pavon"

Nanocomposites are materials of special interest for the development of flexible electronic, optical, and mechanical devices in applications such as transparent conductive electrodes and flexible electronic sensors. These materials take advantage of the electrical, chemical, and mechanical properties of a polymeric matrix, especially in force sensors, as well as the properties of a conductive filler such as silver nanowires (AgNWs). In this work, the fabrication of a force sensor using AgNWs synthesized via the polyol chemical technique is presented.

View Article and Find Full Text PDF

In this study, a novel technique for the quantification of the human chorionic gonadotropin (hCG) hormone using localized surface plasmons and a tapered optical fiber decorated with gold nanoparticles (Au-NPs) is reported. The tapered optical fiber fabrication process involves stretching a single-mode optical fiber using the flame-brushing system. The waist of the tapered optical fiber reaches a diameter of 3 μm.

View Article and Find Full Text PDF

In this paper we compare the intensity distributions in the paraxial and tightly focused regimes corresponding to a double ring perfect optical vortex (DR-POV). Using the scalar diffraction theory and the Richards-Wolf formalism, the fields in the back focal plane of a low and high (tight focusing) NA lens are calculated. In the paraxial case we experimentally observed a DR-POV whose rings enclose a dark zone thanks to the destructive interference introduced by a π phase shift.

View Article and Find Full Text PDF

A comparative study on the sensing properties of a tapered optical fiber pristine and functionalized with the palladium nanoparticles to hydrogen and volatile organic compounds (VOCs), is presented. The sensor response and, response/recovery times were extracted from the measurements of the transient response of the device. The tapered optical fiber sensor was fabricated using a single-mode optical fiber by the flame-brushing technique.

View Article and Find Full Text PDF