-Equipping lithium-ion batteries with a reasonable thermal fault diagnosis can avoid thermal runaway and ensure the safe and reliable operation of the batteries. This research built a lithium-ion battery thermal fault diagnosis model that optimized the original mask region-based convolutional neural network based on the battery dataset in both parameters and structure. The model processes the thermal images of the battery surface, identifies problematic batteries, and locates the problematic regions.
View Article and Find Full Text PDF