HMG (high mobility group) proteins are a diverse family of nonhistone chromosomal proteins that interact with DNA and a wide range of transcriptional regulators to regulate the structural architecture of DNA. HMGXB4 (also known as HMG2L1) is an HMG protein family member that contains a single HMG box domain. Our previous studies have demonstrated that HMGXB4 suppresses smooth muscle differentiation and exacerbates endotoxemia by promoting a systemic inflammatory response in mice.
View Article and Find Full Text PDFMelatonin and fucoidan are naturally active compounds that have been reported to have therapeutic benefits for patients receiving cancer treatment. However, both compounds face significant challenges, including physical, chemical, and biological metabolisms in the gastrointestinal tract, which limit their ability to achieve therapeutic concentrations at the tumor site. Furthermore, the effectiveness of melatonin and fucoidan as adjuvants in vivo is influenced by the route of administration through the digestive system and their accumulation at the endpoint of the tumor.
View Article and Find Full Text PDFTumour hypoxia plays an important role in modulating tumorigenesis, angiogenesis, invasion, immunosuppression, resistance to treatment, and even maintenance of the stemness of cancer stem cells (CSCs). Moreover, the targeting and treatment of hypoxic cancer cells and CSCs to reduce the influence of tumor hypoxia on cancer therapy remains an imperative clinical problem that needs to be addressed. Since cancer cells upregulate the expression of glucose transporter 1 (GLUT1) through the Warburg effect, we considered the possibility of GLUT1-mediated transcytosis in cancer cells and developed a tumor hypoxia-targeting nanomedicine.
View Article and Find Full Text PDFTumor metastasis is a major concern in cancer therapy. In this context, focal adhesion kinase (FAK) gene overexpression, which mediates cancer cell migration and invasion, has been reported in several human tumors and is considered a potential therapeutic target. However, gene-based treatment has certain limitations, including a lack of stability and low transfection ability.
View Article and Find Full Text PDFMitochondrial-targeting therapy is considered an important strategy for cancer treatment. (3-Carboxypropyl) triphenyl phosphonium (CTPP) is one of the candidate molecules that can drive drugs or nanomedicines to target mitochondria via electrostatic interactions. However, the mitochondrial-targeting effectiveness of CTPP is low.
View Article and Find Full Text PDFRecent studies have indicated that cancer treatment based on immunotherapy alone is not viable. Combined treatment with other strategies is required to achieve the expected therapeutic effect. Reactive oxygen species (ROS) play an important role in regulating cancer cells and the tumor microenvironment, even in immune cells.
View Article and Find Full Text PDFIn the treatment of cancers, small interfering ribonucleic acids (siRNAs) are delivered into cells to inhibit the oncogenic protein's expression; however, polyanions, hydrophilicity, and rapid degradations in blood, endosomal or secondary lysosomal degradation hamper clinal applications. In this study, we first synthesized and characterized two copolymers: methoxy poly(ethylene glycol)-b-poly(2-hydroxy methacrylate-ketal-pyridoxal) and methoxy poly(ethylene glycol)-b-poly(methacrylic acid-co-histidine). Afterwards, we assembled two polymers with the focal adhesion kinase (FAK) siRNA, forming polyplex-mixed micelles for the treatment of the human colon cancer cell line HCT116.
View Article and Find Full Text PDFWe have previously demonstrated that the transcription co-factor yes-associated protein 1 (YAP1) promotes vascular smooth muscle cell (VSMC) de-differentiation. Yet, the role and underlying mechanisms of YAP1 in neointima formation in vivo remain unclear. The goal of this study was to investigate the role of VSMC-expressed YAP1 in vascular injury-induced VSMC proliferation and delineate the mechanisms underlying its action.
View Article and Find Full Text PDFYin Yang 1 (YY1) regulates gene transcription in a variety of biological processes. In this study, we aim to determine the role of YY1 in vascular smooth muscle cell (VSMC) phenotypic modulation both in vivo and in vitro. Here we show that vascular injury in rodent carotid arteries induces YY1 expression along with reduced expression of smooth muscle differentiation markers in the carotids.
View Article and Find Full Text PDFTo reduce the side effects of immune drugs and the sustainable release of immune drugs on local parts, we have designed an injectable thermal-sensitive hydrogel containing an imiquimod-loaded liposome system. In the extracellular environment of tumor tissues (pH 6.4), 50% of the drug was released from the carrier, which could be a result of the morphological changes of the liposomal microstructure in the acidic environment.
View Article and Find Full Text PDFTEAD1 (TEA domain transcription factor 1), a transcription factor known for the functional output of Hippo signaling, is important for tumorigenesis. However, the role of TEAD1 in the development of vascular smooth muscle cell (VSMC) is unknown. To investigate cell-specific role of Tead1, we generated cardiomyocyte (CMC) and VSMC-specific Tead1 knockout mice.
View Article and Find Full Text PDFRationale: TEAD (TEA domain transcription factor) 1-a major effector of the Hippo signaling pathway-acts as an oncoprotein in a variety of tumors. However, the function of TEAD1 in vascular smooth muscle cells (VSMCs) remains unclear.
Objective: To assess the role of TEAD1 in vascular injury-induced smooth muscle proliferation and delineate the mechanisms underlying its action.
In response to vascular injury, vascular smooth muscle cells (VSMCs) may switch from a contractile to a proliferative phenotype thereby contributing to neointima formation. Previous studies showed that the long noncoding RNA (lncRNA) is critical for paraspeckle formation and tumorigenesis by promoting cell proliferation and migration. However, the role of in VSMC phenotypic modulation is unknown.
View Article and Find Full Text PDFA dual-sensitive polymeric drug conjugate (HA-SS-MP) was synthesized by conjugating hydrophobic 6-mercaptopurine (MP) to thiolated hyaluronic acid (HA) as the carrier and ligand to deliver doxorubicin (Dox) to parental colon cancer and colon cancer stem cells. Because of the amphiphilic nature of HA-SS-MP, it was self-assembled in the aqueous media, and Dox was physically encapsulated in the core of the micelles. The particle size and the zeta potential of the micelle were analyzed by dynamic light scattering (DLS), and the morphology of the micelle was investigated using transmission electron microscopy (TEM).
View Article and Find Full Text PDFThe Hippo- yes-associated protein (YAP) pathway is essential for controlling organ size and tumorigenesis. Previous studies have demonstrated that the primary outcome of YAP signaling in the nucleus is achieved by interaction with the transcription factor TEA domain transcription factor (TEAD1). The YAP/TEAD1 complex binds to DNA element and regulates the expression of genes involved in cell growth.
View Article and Find Full Text PDFCombination therapy through simultaneous delivery of two or more therapeutic agents using nanocarriers has emerged as an advanced tactic for cancer treatment. To ensure that two therapeutic agents can be co-delivered and rapidly release their cargo in tumor cells, a biocompatible pH-sensitive copolymer, methoxy poly(ethylene glycol)-b-poly(hydroxypropyl methacrylamide-g-α-tocopheryl succinate-g-histidine) (abbreviated as PTH), was designed and synthesized. The PTH copolymers spontaneously self-assembled into micellar-type nanoparticles in aqueous solutions and are used for co-delivery of therapeutic agents, doxorubicin (Dox) and α-TOS.
View Article and Find Full Text PDFCytosolic drug delivery, a major route in cancer therapy, is limited by the lack of efficient and safe endosomal escape techniques. Herein, we demonstrate a reactive oxygen species (ROS)-responsive micelle composed of methoxy polyethylene glycol-b-poly(diethyl sulfide) (mPEG-PS) copolymers which can induce specific endosome escape in cancer cells by changes in the hydrophobicity of copolymers. Owing to the more ROS levels in cancer cells than normal cells, the copolymers can be converted into more hydrophilic and insert into and destabilize the cancer intracellular endosome membrane after cellular uptake.
View Article and Find Full Text PDF