Publications by authors named "Luyan Z Ma"

Antibiotic resistance is a growing public health challenge. Antimicrobial peptides (AMPs) effectively target microorganisms through non-specific mechanisms, limiting their ability to develop resistance. Therefore, the prediction and design of new AMPs is crucial.

View Article and Find Full Text PDF

Antibiotic resistance or tolerance of pathogens is one of the most serious global public health threats. Bacteria in biofilms show extreme tolerance to almost all antibiotic classes. Thus, use of antibiofilm drugs without bacterial-killing effects is one of the strategies to combat antibiotic tolerance.

View Article and Find Full Text PDF

Biofilms are complex microbial communities embedded in extracellular matrix. Pathogens within the biofilm become more resistant to the antibiotics than planktonic counterparts. Novel strategies are required to encounter biofilms.

View Article and Find Full Text PDF

is one of the leading nosocomial pathogens that causes both severe acute and chronic infections. The strong capacity of to form biofilms can dramatically increase its antibiotic resistance and lead to treatment failure. The biofilm resident bacterial cells display distinct gene expression profiles and phenotypes compared to their free-living counterparts.

View Article and Find Full Text PDF

The opportunistic pathogen Pseudomonas aeruginosa is an environmental microorganism and is a model organism for biofilm research. Cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that plays critical roles in biofilm formation. P.

View Article and Find Full Text PDF

Microbial communities enmeshed in a matrix of macromolecules, termed as biofilms, are the natural setting of bacteria. Exopolysaccharide is a critical matrix component of biofilms. Here, we focus on biofilm matrix exopolysaccharides in .

View Article and Find Full Text PDF

Escherichia coli O157:H7 is one of the most important foodborne pathogens that can persist in leafy green vegetables and subsequently produce biofilms. Biofilm formation is an ongoing concern in the food industry as biofilms are relatively resistant to a variety of antimicrobial treatments. In the present study, we evaluated the combined effects of phage FP43 and mild-heated slightly acidic hypochlorous water (SAHW) in reducing established biofilms on lettuce.

View Article and Find Full Text PDF

One of the hallmarks of the environmental bacterium Pseudomonas aeruginosa is its excellent ecological flexibility, which can thrive in diverse ecological niches. In different ecosystems, P. aeruginosa may use different strategies to survive, such as forming biofilms in crude oil environment, converting to mucoid phenotype in the cystic fibrosis (CF) lung, or becoming persisters when treated with antibiotics.

View Article and Find Full Text PDF

Pseudomonas aeruginosa rugose small-colony variants (RSCVs) are frequently isolated from chronic infections, yet, they are rarely reported in environmental isolates. Here, during the comparative genomic analysis of two P. aeruginosa strains isolated from crude oil, we discovered a spontaneous in-frame deletion, wspA , which led to hyper-biofilm and RSCV phenotypes.

View Article and Find Full Text PDF

Focusing the marine euphotic zone, which is the pivotal region for interaction of solar light-mineral-microorganism and the elements cycle, we have conducted the research on the mechanism of semiconducting minerals promoting extracellular electron transfer with microorganisms in depth. Therein, anatase which is one of the most representative semiconducting minerals in marine euphotic zone was selected. The mineralogical characterization of anatase was identified by ESEM, AFM, EDS, Raman, XRD, and its semiconducting characteristics was determined by UV-Vis and Mott-Schottky plots.

View Article and Find Full Text PDF

Hospital-acquired infection is a great challenge for clinical treatment due to pathogens' biofilm formation and their antibiotic resistance. Here, we investigate the effect of antiseptic agent polyhexamethylene biguanide (PHMB) and undecylenamidopropyl betaine (UB) against biofilms of four pathogens that are often found in hospitals, including Gram-negative bacteria and , Gram-positive bacteria , and pathogenic fungus, . We show that 0.

View Article and Find Full Text PDF

is an environmental microorganism that can thrive in diverse ecological niches including plants, animals, water, soil, and crude oil. It also one of the microorganism widely used in tertiary recovery of crude oil and bioremediation. However, the genomic information regarding the mechanisms of survival and adapation of this bacterium in crude oil is still limited.

View Article and Find Full Text PDF

Antibodies are essential for elucidating gene function. However, affordable technology for proteome-scale antibody generation does not exist. To address this, we developed Proteome Epitope Tag Antibody Library (PETAL) and its array.

View Article and Find Full Text PDF

Pseudomonas aeruginosa isolates from cystic fibrosis patients are often mucoid (due to the overexpression of exopolysaccharide alginate) yet lost motility. It remains unclear about how P. aeruginosa coordinately regulates alginate production and the type IV pili-driven twitching motility.

View Article and Find Full Text PDF

Opportunistic pathogen Pseudomonas aeruginosa can cause acute and chronic infections in humans. It is notorious for its resistance to antibiotics due to the formation of biofilms. Cyclic-di-GMP is a bacterial second messenger that plays important roles during biofilm development.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Chinese medicinal herbs have long been recognized as important resources that can be used for the struggle against diseases and a significant component of health care system for thousands of years.

Aim Of The Study: In order to understand their roles in the treatment against bacterial infections, we examined the underlying mechanisms of one of the medicinal herb extracts (MHE) (Artemisiae argyi Folium, the root bark of Cortex dictamni and the root of Solanum melongena) on the human opportunistic pathogen Pseudomonas aeruginosa.

Materials And Methods: We combined phenotypic assays, transcriptional analysis and chemical investigations to identify the mechanisms underlying MHE inhibition.

View Article and Find Full Text PDF

Cyclic diguanosine monophosphate (c-di-GMP) is an important second messenger involved in bacterial switching from motile to sessile lifestyles. In the opportunistic pathogen , at least 40 genes are predicted to encode proteins for the making and breaking of this signal molecule. However, there is still paucity of information concerning the systemic expression pattern of these genes and the functions of uncharacterized genes.

View Article and Find Full Text PDF

Biofilms are microbial communities that are embedded in the extracellular matrix. The exopolysaccharide (EPS) is a key component of the biofilm matrix that maintains the structure of the biofilm and protects the bacteria from antimicrobials. Microbial glycoside hydrolases have been exploited to disrupt biofilms by breaking down EPSs.

View Article and Find Full Text PDF

Biofilms are microbial communities embedded in extracellular matrix. Exopolysaccharide Psl (ePsl) is a key biofilm matrix component that initiates attachment, maintains biofilms architecture, and protects bacteria within biofilms of Pseudomonas aeruginosa, an opportunistic pathogen. There are at least 12 Psl proteins involved in the biosynthesis of this exopolysaccharide.

View Article and Find Full Text PDF

The human pathogen Pseudomonas aeruginosa can easily form biofilms. The extracellular matrix produced by the bacterial cells acts as a physical barrier to hinder the antibiotics treatment. It is necessary to destroy the biofilm in order to improve the efficacy of antibiotics.

View Article and Find Full Text PDF

Bioelectrical nanowires as ecomaterials have great potential on environmental applications. A wide range of bacteria can express type IV pili (T4P), which are long protein fibers assembled from PilA. The T4P of Geobacter sulfurreducens are well known as "microbial nanowires," yet T4P of Pseudomonas aeruginosa (PaT4P) was believed to be poorly conductive.

View Article and Find Full Text PDF

Biofilms of are ubiquitously found on surfaces of many medical devices, which are the major cause of hospital-acquired infections. A large amount of work has been focused on bacterial attachment on surfaces. However, how bacterial cells evolve on surfaces after their attachment is the key to get better understanding and further control of biofilm formation.

View Article and Find Full Text PDF
Article Synopsis
  • Biofilms are communities of bacteria that secrete a protective matrix, rich in proteins and enzymes, but the specific roles of these enzymes in biofilm formation are not well understood.
  • The study focused on PaAP, an aminopeptidase enzyme from Pseudomonas aeruginosa, finding that its deletion enhanced initial biofilm attachment but caused significant cell death and disruption of the biofilm after 24 hours.
  • The research highlights PaAP's critical role in biofilm development and suggests that targeting this enzyme could be a potential strategy to prevent infections caused by P. aeruginosa and related biofilm issues.
View Article and Find Full Text PDF

PslG attracted a lot of attention recently due to its great potential abilities in inhibiting biofilms of However, how PslG affects biofilm development still remains largely unexplored. Here, we focused on the surface motility of bacterial cells, which is critical for biofilm development. We studied the effects of PslG on bacterial surface movement in early biofilm development at a single-cell resolution by using a high-throughput bacterial tracking technique.

View Article and Find Full Text PDF

Bacterial biofilms play essential roles in biogeochemical cycling, degradation of environmental pollutants, infection diseases, and maintenance of host health. The lack of quantitative methods for growing and characterizing biofilms remains a major challenge in understanding biofilm development. In this study, a dynamic sessile-droplet habitat is introduced, a simple method which cultivates biofilms on micropatterns with diameters of tens to hundreds of micrometers in a microfluidic channel.

View Article and Find Full Text PDF