Background: The fall armyworm, Spodoptera frugiperda, is a significant and widespread pest of maize, sorghum, rice, and other economically important crops. Successful management of this caterpillar pest has historically relied upon application of synthetic insecticides and through cultivation of genetically engineered crops expressing insecticidal proteins (Bt crops). Fall armyworm has, however, developed resistance to both synthetic insecticides and Bt crops, which risks undermining the benefits delivered by these important crop protection tools.
View Article and Find Full Text PDFBackground: Previous genetic pest management (GPM) systems in diamondback moth (DBM) have relied on expressing lethal proteins ('effectors') that are 'cell-autonomous', that is, they do not leave the cell in which they are expressed. To increase the flexibility of future GPM systems in DBM, we aimed to assess the use of a non-cell-autonomous, invertebrate-specific, neurotoxic effector - the scorpion toxin AaHIT. This AaHIT effector was designed to be secreted by expressing cells, potentially leading to effects on distant cells, specifically neuromuscular junctions.
View Article and Find Full Text PDF