Publications by authors named "Luxuan Li"

Conjugated polymer coatings enhance bacteria with eco-friendly energy use. A new hybrid system boosts hydrogen production by @polypyrrole (@PPy) through interface electron transfer and hydrogel encapsulation. To maximize the output, we studied hydrogen metabolism using various techniques and found that conductive polymer modification facilitated electron transfer, affecting intracellular pathways.

View Article and Find Full Text PDF

Organophosphorus pesticides (OPPs) constitute the most widely employed class of pesticides. However, the prevalent use of OPPs, while advantageous, raises concerns due to their toxicity, posing serious threats to food safety. Chemical sensors utilizing quantum dots (QDs) demonstrate promising applications in rapidly detecting OPPs residues, thereby facilitating efficient inspection of agricultural products.

View Article and Find Full Text PDF

Despite great progress in the active interfacing between various abiotic materials and living organisms, the development of a smart polymer matrix with modulated functionality of algae towards the application of green bioenergy is still rare. Herein, we design a thermally sensitive poly(-isopropylacrylamide)--poly(butyl acrylate) with an LCST ( 25 °C) as a chassis, which could co-assemble with algal cells based on hydrophobic interaction to generate a new type of robust hybrid hydrogel living material. By modulating the temperature to 30 °C, the volume of the polymer matrix is shrunk by 9 times, which allows the formation of physical shading and metabolism changing of the algae, and then triggers the functionality switching of the algae from photosynthetic oxygen production to hydrogen production.

View Article and Find Full Text PDF

Modulated membrane functionalization is a necessary and overarching step for hollow microcompartments toward their application as nanoreactors or artificial cells. In this study, we show a way to generate phospholipid hybrid proteinosomes that could show superposed virtues of liposomes and proteinosomes. In comparison to pure proteinosomes, both the membrane fluidity and permeability are improved obviously after forming the phospholipid hybrid proteinosomes.

View Article and Find Full Text PDF

With the increasing awareness of sustainable development, energy and environment are becoming two of the most important issues of concern to the world today. Whole-cell-based photosynthetic biohybrid systems (PBSs), an emerging interdisciplinary field, are considered as attractive biosynthetic platforms with great prospects in energy and environment, combining the superiorities of semiconductor materials with high energy conversion efficiency and living cells with distinguished biosynthetic capacity. This review presents a systematic discussion on the synthesis strategies of whole-cell-based PBSs that demonstrate a promising potential for applications in sustainable solar-to-chemical conversion, including light-facilitated carbon dioxide reduction and biohydrogen production.

View Article and Find Full Text PDF