Cellulose acetate (CA) nanofibers are prepared using solution blow co-spinning (SBS) with poly(ethylene oxide) (PEO). The pure CA membranes are obtained by washing water-soluble PEO from the fibrous CA-PEO blend. Nanofibrous membranes are characterized using optical and scanning electron microscopy (SEM), differential scanning calorimetry (DSC), infrared spectroscopy (ATR-FTIR), and surface zeta potential measurements.
View Article and Find Full Text PDFCellulose acetate (CA), a very promising derivative of cellulose, has come into the focus of research due to its highly desired good film-forming ability for food packaging applications. Frequently, this derivative is used in combination with other compounds (polymers, nanoparticles) in order to obtain active materials. Here, we report the preparation of thin films made of cellulose acetate loaded with chitosan (CS) using the solution blow spinning (SBS) method.
View Article and Find Full Text PDFChromium (Cr) is a toxic inorganic contaminant for drinking water, in which the concentration has to be controlled for human health and safety. Cr retention was investigated with stirred cell experiments using sulphonated polyethersulfone nanofiltration (NF) membranes of different molecular weight cut-off (MWCO). Cr(III) and Cr(VI) retention follow the order of the MWCO of the studied NF membranes; HY70-720 Da > HY50-1000 Da > HY10-3000 Da with a pH dependency, especially for Cr(III).
View Article and Find Full Text PDFSurface charge and in vitro corrosion resistance are some of the key parameters characterizing biomaterials in the interaction of the implant with the biological environment. Hence, this work investigates the in vitro bioelectrochemical behavior of newly developed oxide nanotubes (ONTs) layers of second-generation (2G) on a Ti-13Zr-13Nb alloy. The 2G ONTs were produced by anodization in 1 M (NH)SO solution with 2 wt.
View Article and Find Full Text PDFMagnetic nanoparticles (MNPs) have received increasing attention for various applications due to their fast synthesis, versatile functionalization, and recyclability by the application of a magnetic field. The high surface-to-volume ratio of MNP dispersions has suggested their use as an adsorbent for the removal of heavy metal ions. We investigated the applicability of MNPs composed of a maghemite core surrounded by a silica shell functionalized with aminopropylsilane, γ-Fe2O3-NH4OH@SiO2(APTMS), for the removal of neodymium ions (Nd3+) from aqueous solution.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2023
Controlling protein adsorption on biomaterial surfaces requires a thorough understanding of interfacial phenomena. Proteins adhering after implantation influence successful biointegration. Deciphering adsorption mechanisms at biointerfaces is crucial and of high interest.
View Article and Find Full Text PDFInterfacial adsorption is a major concern in the processing of biopharmaceutics as it not only leads to a loss of protein, but also to particle formation. Protein particle formation during peristaltic pumping is linked to interfacial adsorption to the tubing and subsequent tearing of the formed protein film. In the current study, driving forces and rate of the adsorption of a monoclonal antibody to the silicone rubber surface during pumping, as well as particle formation, were studied in different formulations.
View Article and Find Full Text PDFHere, we propose a low-cost, sustainable, and viable adsorbent (pine tree-derived biochar) to remove acid dyes such as acid violet 17 (AV), which is used in the silk dyeing industry. As a case study, the AV removal process was demonstrated using synthetic effluent and further as a proof of concept using real dye effluent produced from the Sirumugai textile unit in India. The pine tree-derived biochar was selected for removal of aqueous AV dye in batch and fixed-bed column studies.
View Article and Find Full Text PDFChitosan (Chi) and 77KS, a lysine-derived surfactant, form polyelectrolyte complexes that reverse their charge from positive to negative at higher 77KS concentrations, forming aggregates that have been embedded with amoxicillin (AMOX). Dispersion of this complex was used to coat polydimethylsiloxane (PDMS) films, with an additional layer of anionic and hydrophilic hyaluronic acid (HA) as an outer adsorbate layer to enhance protein repulsion in addition to antimicrobial activity by forming a highly hydrated layer in combination with steric hindrance. The formed polysaccharide-based bilayer on PDMS was analyzed by water contact angle measurements, X-ray photoelectron spectroscopy (XPS), and surface zeta ()-potential.
View Article and Find Full Text PDFThe surface properties of wood fiber (WF) filled polymer composites depend on the filler loading and are closely related to the distribution and orientation in the polymer matrix. In this study, wood fibers (WF) were incorporated into thermoplastic composites based on non-recycled polypropylene (PP) and recycled (R-PP) composites by melt compounding and injection moulding. ATR-FTIR (attenuated total reflection Fourier transform infrared spectroscopy) measurements clearly showed the propagation of WF functional groups at the surface layer of WF-PP/WF-R-PP composites preferentially with WF loading up to 30%.
View Article and Find Full Text PDFThe analysis of the surface zeta potential (SZP) opens up new possibilities in the characterization of various materials used for scientific or industrial applications. It provides at the same time insight into the material surface chemistry and elucidates the interactions with charged species in the aqueous test solution. For this purpose, an accurate, reliable and repeatable analysis of the SZP is the key factor.
View Article and Find Full Text PDFIn this research, antimicrobial polysaccharide chitosan was used as a surface coating for packaging material. The aim of our research was to establish an additive formulation of chitosan and antioxidative plant extracts as dispersion of nanoparticles. Chitosan nanoparticles with embedded thyme, rosemary and cinnamon extracts were synthesized, and characterized for this purpose.
View Article and Find Full Text PDFHerein, we demonstrate the fabrication of Bi(0)-doped bismuth oxyhalide solid solution films for the removal of trace organic pollutants (TrOPs) in water. With the advantage of a viscous AlOOH sol, very high loadings (75 wt %) of bismuth oxyhalides were embedded within the thin films and calcined at 500 °C to develop porous alumina composite coatings. Various concentrations of Bi(0) doping were tested for their photocatalytic activity.
View Article and Find Full Text PDFBurns and chronic wounds, often related to chronic diseases (as diabetes and cancer), are challenging lesions, difficult to heal. The prompt and full reconstitution of a functional skin is at the basis of the development of biopolymer-based scaffolds, representing a 3D substrate mimicking the dermal extracellular matrix. Aim of the work was to develop scaffolds intended for skin regeneration, according to: fabrication by electrospinning from aqueous polysaccharide solutions; prompt and easy treatment to obtain scaffolds insoluble in aqueous fluids; best performance in supporting wound healing.
View Article and Find Full Text PDFThis paper discusses the mechanical and physicochemical properties of film matrices based on chitosan, as well as the possibility of optimizing these properties by adding chitin nanofibrils. It is shown that with the introduction of chitin nanofibrils as a filler, the mechanical stability of the composite materials increases. By varying the concentration of chitin nanofibrils, it is possible to obtain a spectrum of samples with different bioactive properties for the growth of human dermal fibroblasts.
View Article and Find Full Text PDFNanocellulose (NC) have garnered much interest worldwide due to its physical and chemical properties. Nanocellulose is produced from biomass materials by bleaching pretreatment, followed by acid hydrolysis. This work demonstrated the production of NC from recycled paper sludge (RPS), a crystalline cellulose rich waste, by ozonation pretreatment, followed by maleic acid hydrolysis.
View Article and Find Full Text PDFThis work reports on streaming potential measurements through natural capillaries in wood and investigates the cause of a time-dependent zeta potential measured during the equilibration of wood cell-walls with an electrolyte solution. For the biomaterial, this equilibration phase takes several hours, which is much longer than for many other materials that have been characterized by electrokinetic measurements. During this equilibration phase the zeta potential magnitude is decaying due to two parallel mechanisms: (i) the swelling of the cell-wall which causes a dimensional change reducing the charge density at the capillary interface; (ii) the transport of ions from the electrolyte solution into the permeable cell-wall which alters the electrical potential at the interface by internal charge compensation.
View Article and Find Full Text PDFBovine β-lactoglobulin (LGB) is a transport protein that can bind to its structure hydrophobic bioactive molecules. Due to the lack of toxicity, high stability and pH-dependent molecular binding mechanism, lactoglobulin can be used as a carrier of sparingly soluble drugs. Dynamic light scattering has confirmed LGB's tendency to create oligomeric forms.
View Article and Find Full Text PDFThe success or failure of a material when implanted in the body is greatly determined by the surface properties of the material and the host tissue reactions. The very first event that takes place after implantation is the interaction of soluble ions, molecules and proteins from the biological environment with the material surface leading to the formation of an adsorbed protein layer that will later influence cell attachment. In this context, the particular topography and surface charge of a material become critical as they influence the nature of the proteins that will adsorb.
View Article and Find Full Text PDFThis study reports on the selective adsorption of whole plasma proteins on hydrothermally (HT) grown TiO2-anatase coatings and its dependence on the three main surface properties: surface charge, wettability and roughness. The influence of the photo-activation of TiO2 by UV irradiation was also evaluated. Even though the protein adhesion onto Ti-based substrates was only moderate, better adsorption of any protein (at pH = 7.
View Article and Find Full Text PDFIt is known that the "race for the surface" determining the in vivo response is strictly connected to the physico-chemical properties of the material, especially at its surface. Accordingly, the study of surface roughness, charge and wettability is fundamental to predict the bio-response to the implant. In this work, streaming potential was chosen as a reliable method to quantify the solid surface charge of hydrothermally treated (HT) TiO2-anatase nano-crystalline coatings, grown on titanium substrates.
View Article and Find Full Text PDFNanoscale surface modification of biomedical implant materials offers enhanced biological activity concerning protein adsorption and cell adherence. Nanoporous anodic alumina oxide (AAO) layers were prepared by electrochemical oxidation of thin Al-seed layers in 0.22 M C2H2O4, applying anodization voltages of 20-60 V.
View Article and Find Full Text PDFFor the correct interpretation of results of tangential electrokinetic measurements with porous materials, in particular, composite/asymmetric membranes on porous supports, it is necessary to have the data available for various channel heights. In some kinds of equipment, the variation of channel height is technically possible only for a range of relatively large heights. This communication shows that under these conditions, the fluid flow can become undeveloped and the conventional approaches to the interpretation of electrokinetic measurements should be modified accordingly.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
April 2013
β-Stabilized titanium (Ti) alloys containing non-toxic elements, particularly niobium (Nb), are promising materials for the construction of bone implants. Their biocompatibility can be further increased by oxidation of their surface. Therefore, in this study, the adhesion, growth and viability of human osteoblast-like MG 63 cells in cultures on oxidized surfaces of a β-TiNb alloy were investigated and compared with the cell behavior on thermally oxidized Ti, i.
View Article and Find Full Text PDFThe so-called zeta potential can be determined through electrokinetic measurements and indicates the status regarding surface charges along the interface between solids and liquids. Surface charge gives us information about the condition, quality, and characteristics of a macroscopic surface in the polar medium. In our study the zeta potential was determined using a "SurPASS" electrokinetic analyzer based on the streaming current and streaming potential measurements.
View Article and Find Full Text PDF