Publications by authors named "Luud Gilissen"

Purpose Of Review: Plant-derived foods are one of the most common causative sources of food allergy in China, with a significant relationship to pollinosis. This review aims to provide a comprehensive overview of this food-pollen allergy syndrome and its molecular allergen diagnosis to better understand the cross-reactive basis.

Recent Findings: Food-pollen cross-reactivity has been mainly reported in Northern China, Artemisia pollen is the major related inhalant source, followed by tree pollen (Betula), while grass pollen plays a minor role.

View Article and Find Full Text PDF

Background: Many individuals reduce their bread intake because they believe wheat causes their gastrointestinal (GI) symptoms. Different wheat species and processing methods may affect these responses.

Objectives: We investigated the effects of 6 different bread types (prepared from 3 wheat species and 2 fermentation conditions) on GI symptoms in individuals with self-reported noncoeliac wheat sensitivity (NCWS).

View Article and Find Full Text PDF

Three genotypes each of bread wheat, durum wheat and tritordeum were grown in randomized replicated field trials in Andalusia (Spain) for two years and wholemeal flours analysed for a range of components to identify differences in composition. The contents of all components that were determined varied widely between grain samples of the individual species and in most cases also overlapped between the three species. Nevertheless, statistically significant differences between the compositions of the three species were observed.

View Article and Find Full Text PDF

Five cultivars of bread wheat and spelt and three of emmer were grown in replicate randomised field trials on two sites for two years with 100 and 200 kg nitrogen fertiliser per hectare, reflecting low input and intensive farming systems. Wholemeal flours were analysed for components that are suggested to contribute to a healthy diet. The ranges of all components overlapped between the three cereal types, reflecting the effects of both genotype and environment.

View Article and Find Full Text PDF

Wholemeal flours from blends of bread wheat, emmer and spelt were processed into bread using yeast-based and sourdough fermentation. The bread wheat flour contained significantly higher concentrations of total dietary fibre and fructans than the spelt and emmer flours, the latter having the lowest contents. Breadmaking using sourdough and yeast systems resulted in changes in composition from flour to dough to bread including increases in organic acids and mannitol in the sourdough system and increases in amino acids and sugars (released by hydrolysis of proteins and starch, respectively) in both processing systems.

View Article and Find Full Text PDF

Amylase/trypsin-inhibitors (ATIs) comprise about 2-4% of the total wheat grain proteins and may contribute to natural defense against pests and pathogens. However, they are currently among the most widely studied wheat components because of their proposed role in adverse reactions to wheat consumption in humans. ATIs have long been known to contribute to IgE-mediated allergy (notably Bakers' asthma), but interest has increased since 2012 when they were shown to be able to trigger the innate immune system, with attention focused on their role in coeliac disease which affects about 1% of the population and, more recently, in non-coeliac wheat sensitivity which may affect up to 10% of the population.

View Article and Find Full Text PDF

Most alpha-gliadin genes of the Gli-D2 locus on the D genome of hexaploid bread wheat (Triticum aestivum) encode for proteins with epitopes that can trigger coeliac disease (CD), and several contain a 33-mer peptide with six partly overlapping copies of three epitopes, which is regarded as a remarkably potent T-cell stimulator. To increase genetic diversity in the D genome, synthetic hexaploid wheat lines are being made by hybridising accessions of Triticum turgidum (AB genome) and Aegilops tauschii (the progenitor of the D genome). The diversity of alpha-gliadins in A.

View Article and Find Full Text PDF

Ingestion of gluten proteins (gliadins and glutenins) from wheat, barley and rye can cause coeliac disease (CD) in genetically predisposed individuals. The only remedy is a strict and lifelong gluten-free diet. There is a growing desire for coeliac-safe, whole-grain wheat-based products, as consumption of whole-grain foods reduces the risk of chronic diseases.

View Article and Find Full Text PDF
Article Synopsis
  • A study in Xinjiang, China, examined 2,277 patients with gastrointestinal symptoms to assess the prevalence of coeliac disease among four ethnic groups (Han, Uyghur, Kazakh, and Hui) with an average age of 54.
  • The findings showed that 1.27% of the patients had coeliac disease autoimmunity, with the highest rates in the Hui (3.03%) and the Uyghur (1.81%), and those living in rural areas had a significantly higher frequency of the disease compared to urban residents.
  • Results suggest that both genetic factors (like the HLA-DQ2 and DQ8 haplotypes) and environmental factors,
View Article and Find Full Text PDF

During the 20th century, the economic position of oats (Avena sativa L.) decreased strongly in favour of higher yielding crops including winter wheat and maize. Presently, oat represents only ~1.

View Article and Find Full Text PDF

A strict gluten-free diet is currently the only treatment for the 1-2% of the world population who suffer from coeliac disease (CD). However, due to the presence of wheat and wheat derivatives in many food products, avoiding gluten consumption is difficult. Gluten-free products, made without wheat, barley or rye, typically require the inclusion of numerous additives, resulting in products that are often less healthy than gluten-based equivalents.

View Article and Find Full Text PDF

The water-insoluble storage proteins of cereals (prolamins) are called "gluten" in wheat, barley, and rye, and "avenins" in oat. Gluten can provoke celiac disease (CD) in genetically susceptible individuals (those with human leukocyte antigen (HLA)-DQ2 or HLA-DQ8 serotypes). Avenins are present at a lower concentration (10%-15% of total protein content) in oat as compared to gluten in wheat (80%-85%).

View Article and Find Full Text PDF

Background & Aims: In China, epidemiologic information on celiac disease autoimmunity is scarce and fragmented. We investigated the prevalence of celiac disease autoimmunity in the general Chinese population.

Methods: In a cross-sectional prospective study, 19,778 undiagnosed Chinese adolescents and young adults (age, 16-25 y) were recruited from consecutive new students who underwent routine physical examinations at 2 universities in Jiangxi, China, from September 2010 through October 2013; the students were from 27 geographic regions in China.

View Article and Find Full Text PDF

Objective: Until recently, celiac disease was considered to be rare in China. We aimed to estimate its true status.

Methods: By searching the MEDLINE database and four Chinese full-text databases (CNKI, CBM, VIP and WANFANG) (up to August 2012), as well as two HLA allele frequency net databases and the Chinese Statistics Yearbook databases, we systematically reviewed the literature on definite and suspected cases of celiac disease, the predisposing HLA allele frequencies, and on gluten exposure in China.

View Article and Find Full Text PDF

Background: The gamma-gliadins are considered to be the oldest of the gliadin family of storage proteins in Aegilops/Triticum. However, the expansion of this multigene family has not been studied in an evolutionary perspective.

Results: We have cloned 59 gamma-gliadin genes from Aegilops and Triticum species (Aegilops caudata L.

View Article and Find Full Text PDF

Background: Celiac disease (CD) is caused by an uncontrolled immune response to gluten, a heterogeneous mixture of wheat storage proteins. The CD-toxicity of these proteins and their derived peptides is depending on the presence of specific T-cell epitopes (9-mer peptides; CD epitopes) that mediate the stimulation of HLA-DQ2/8 restricted T-cells. Next to the thoroughly characterized major T-cell epitopes derived from the α-gliadin fraction of gluten, γ-gliadin peptides are also known to stimulate T-cells of celiac disease patients.

View Article and Find Full Text PDF

Pollen of the European and Asian white birch (Betula pendula and B. platyphylla) causes hay fever in humans. The allergenic potency of other birch species is largely unknown.

View Article and Find Full Text PDF

Celiac disease is caused by an uncontrolled immune response to gluten, a heterogeneous mixture of wheat storage proteins, including the α-gliadins. It has been shown that α-gliadins harbor several major epitopes involved in the disease pathogenesis. A major step towards elimination of gluten toxicity for celiac disease patients would thus be the elimination of such epitopes from α-gliadins.

View Article and Find Full Text PDF

Background: Bet v 1 is an important cause of hay fever in northern Europe. Bet v 1 isoforms from the European white birch (Betula pendula) have been investigated extensively, but the allergenic potency of other birch species is unknown. The presence of Bet v 1 and closely related PR-10 genes in the genome was established by amplification and sequencing of alleles from eight birch species that represent the four subgenera within the genus Betula.

View Article and Find Full Text PDF

Background: Alpha-gliadins form a multigene protein family encoded by multiple alpha-gliadin (Gli-2) genes at three genomic loci, Gli-A2, Gli-B2 and Gli-D2, respectively located on the homoeologous wheat chromosomes 6AS, 6BS, and 6DS. These proteins contain a number of important celiac disease (CD)-immunogenic domains. The alpha-gliadins expressed from the Gli-B2 locus harbour fewer conserved CD-epitopes than those from Gli-A2, whereas the Gli-D2 gliadins have the highest CD-immunogenic potential.

View Article and Find Full Text PDF

Background: Mal d 1 is a major apple allergen causing food allergic symptoms of the oral allergy syndrome (OAS) in birch-pollen sensitised patients. The Mal d 1 gene family is known to have at least 7 intron-containing and 11 intronless members that have been mapped in clusters on three linkage groups. In this study, the allelic diversity of the seven intron-containing Mal d 1 genes was assessed among a set of apple cultivars by sequencing or indirectly through pedigree genotyping.

View Article and Find Full Text PDF

Background: Fruits are a major cause of food allergy in adults. Lipid transfer proteins (LTP) are implicated in severe allergic reactions to fruits, but little is known about LTP content in different cultivars.

Objective: Determination of the levels of LTP in a wide range of apple cultivars.

View Article and Find Full Text PDF

Background: Bread wheat (Triticum aestivum) is an important staple food. However, wheat gluten proteins cause celiac disease (CD) in 0.5 to 1% of the general population.

View Article and Find Full Text PDF