Phys Rev E Stat Nonlin Soft Matter Phys
July 2012
We consider a class of percolation models, called Achlioptas processes, discussed in Science 323, 1453 (2009) and Science 333, 322 (2011). For these, the evolution of the order parameter (the rescaled size of the largest connected component) has been the main focus of research in recent years. We show that, in striking contrast to "classical" models, self-averaging is not a universal feature of these new percolation models: there are natural Achlioptas processes whose order parameter has random fluctuations that do not disappear in the thermodynamic limit.
View Article and Find Full Text PDF"Explosive percolation" is said to occur in an evolving network when a macroscopic connected component emerges in a number of steps that is much smaller than the system size. Recent predictions based on simulations suggested that certain Achlioptas processes (much-studied local modifications of the classical mean-field growth model of Erdős and Rényi) exhibit this phenomenon, undergoing a phase transition that is discontinuous in the scaling limit. We show that, in fact, all Achlioptas processes have continuous phase transitions, although related models in which the number of nodes sampled may grow with the network size can indeed exhibit explosive percolation.
View Article and Find Full Text PDF