PRDM16 is a transcription factor with histone methyltransferase activity expressed at the earliest stages of cardiac development. Pathogenic mutations in humans lead to cardiomyopathy, conduction abnormalities, and heart failure. PRDM16 is specifically expressed in ventricular but not atrial cardiomyocytes, and its expression declines postnatally.
View Article and Find Full Text PDFAims: During embryonic development, arteriovenous (AV) differentiation ensures proper blood vessel formation and maturation. Defects in arterial or venous identity cause inappropriate fusion of vessels, resulting in atypical shunts, so-called AV malformations (AVMs). Currently, the mechanism behind AVM formation remains unclear, and treatment options are fairly limited.
View Article and Find Full Text PDFAims: Microvascular dysfunction has been proposed to drive heart failure with preserved ejection fraction (HFpEF), but the initiating molecular and cellular events are largely unknown. Our objective was to determine when microvascular alterations in HFpEF begin, how they contribute to disease progression, and how pericyte dysfunction plays a role herein.
Methods And Results: Microvascular dysfunction, characterized by inflammatory activation, loss of junctional barrier function, and altered pericyte-endothelial crosstalk, was assessed with respect to the development of cardiac dysfunction, in the Zucker fatty and spontaneously hypertensive (ZSF1) obese rat model of HFpEF at three time points: 6, 14, and 21 weeks of age.
Background Arteriovenous fistulae (AVFs) are the gold standard for vascular access in those requiring hemodialysis but may put an extra hemodynamic stress on the cardiovascular system. The complex interactions between the heart, kidney, and AVFs remain incompletely understood. Methods and Results We characterized a novel rat model of five-sixths partial nephrectomy (NX) and AVFs.
View Article and Find Full Text PDFAtypical chemokine receptor 3 (ACKR3, formerly CXC chemokine receptor 7) is a G protein-coupled receptor that recruits β-arrestins, but is devoid of functional G protein signaling after receptor stimulation. In preclinical models of liver and lung fibrosis, ACKR3 was previously shown to be upregulated after acute injury in liver sinusoidal and pulmonary capillary endothelial cells, respectively. This upregulation was linked with a pro-regenerative and anti-fibrotic role for ACKR3.
View Article and Find Full Text PDFPlatelet Endothelial Aggregation Receptor 1 (PEAR1) modulates angiogenesis and platelet contact-induced activation, which play a role in the pathogenesis of colorectal cancer. We therefore tested the association of incident colorectal cancer and genetic and epigenetic variability in PEAR1 among 2532 randomly recruited participants enrolled in the family-based Flemish Study on Environment, Genes and Health Outcomes (51.2% women; mean age 44.
View Article and Find Full Text PDFEndothelial cells throughout the body are heterogeneous, and this is tightly linked to the specific functions of organs and tissues. Heterogeneity is already determined from development onwards and ranges from arterial/venous specification to microvascular fate determination in organ-specific differentiation. Acknowledging the different phenotypes of endothelial cells and the implications of this diversity is key for the development of more specialized tissue engineering and vascular repair approaches.
View Article and Find Full Text PDFBone morphogenetic proteins (BMPs) were originally identified as the active components in bone extracts that can induce ectopic bone formation. In recent decades, their key role has broadly expanded beyond bone physiology and pathology. Nowadays, the BMP pathway is considered an important player in vascular signaling.
View Article and Find Full Text PDFBackground: Chronic pressure overload predisposes to heart failure, but the pathogenic role of microvascular endothelial cells (MiVEC) remains unknown. We characterized transcriptional, metabolic, and functional adaptation of cardiac MiVEC to pressure overload in mice and patients with aortic stenosis (AS).
Methods: In mice subjected to transverse aortic constriction or sham surgery, we performed RNA sequencing of isolated cardiac -MiVEC and validated the signature in freshly isolated MiVEC from left ventricle outflow tract and right atrium of patients with AS.
Background: Cell therapy has been evaluated pre-clinically and clinically as a means to improve wound vascularization and healing. While translation of this approach to clinical practice ideally requires the availability of clinical grade xenobiotic-free cell preparations, studies proving the pre-clinical efficacy of the latter are mostly lacking. Here, the potential of xenobiotic-free human multipotent adult progenitor cell (XF-hMAPC®) preparations to promote vascularization was evaluated.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
April 2020
Liver sinusoidal endothelial cells (LSECs) are the first liver cells to encounter waste macromolecules, pathogens, and toxins in blood. LSECs are highly specialized to mediate the clearance of these substances via endocytic scavenger receptors and are equipped with fenestrae that mediate the passage of macromolecules toward hepatocytes. Although some transcription factors (TFs) are known to play a role in LSEC specialization, information about the specialized LSEC signature and its transcriptional determinants remains incomplete.
View Article and Find Full Text PDFDefective cell migration causes delayed wound healing (WH) and chronic skin lesions. Autologous micrograft (AMG) therapies have recently emerged as a new effective and affordable treatment able to improve wound healing capacity. However, the precise molecular mechanism through which AMG exhibits its beneficial effects remains unrevealed.
View Article and Find Full Text PDFThe loss of endogenous cardiac regenerative capacity within the first week of postnatal life has intensified clinical trials to induce cardiac regeneration in the adult mammalian heart using different progenitor cell types. We hypothesized that donor age-related phenotypic and functional characteristics of cardiac progenitor cells (CPC) account for mixed results of cell-based cardiac repair. We compared expression profiles and cell turnover rates of human heart-derived c-kit progenitors (c-kit CPC) and cardiosphere-derived cells (CDC) from young and adult donor origin and studied their in vitro angiogenic and cardiac differentiation potential, which can be relevant for cardiac repair.
View Article and Find Full Text PDFLymphatic capillary growth is an integral part of wound healing, yet, the combined effectiveness of stem/progenitor cells on lymphatic and blood vascular regeneration in wounds needs further exploration. Stem/progenitor cell transplantation also emerged as an approach to cure lymphedema, a condition caused by lymphatic system deficiency. While lymphedema treatment requires lymphatic system restoration from the capillary to the collector level, it remains undetermined whether stem/progenitor cells support a complex regenerative response across the entire anatomical spectrum of the system.
View Article and Find Full Text PDFBackground: The heart ejects in the central elastic arteries. No previous study in workers described the diurnal profile of central blood pressure (BP) or addressed the question whether electrocardiogram (ECG) indexes are more closely associated with central than peripheral BP.
Methods: In 177 men (mean age, 29.
Background: Dental pulp represents an easily accessible autologous source of adult stem cells. A subset of these cells, named dental pulp pluripotent-like stem cells (DPPSC), shows high plasticity and can undergo multiple population doublings, making DPPSC an appealing tool for tissue repair or maintenance.
Methods: DPPSC were harvested from the dental pulp of third molars extracted from young patients.
Background In view of the increasing heart failure epidemic and awareness of the adverse impact of environmental pollution on human health, we investigated the association of left ventricular structure and function with air pollutants in a general population. Methods In 671 randomly recruited Flemish (51.7% women; mean age, 50.
View Article and Find Full Text PDFIntercellular adhesion plays a major role in tissue development and homeostasis. Yet, technologies to measure mature cell-cell contacts are not available. We introduce a methodology based on fluidic probe force microscopy to assess cell-cell adhesion forces after formation of mature intercellular contacts in cell monolayers.
View Article and Find Full Text PDFErythro-myeloid progenitors (EMPs) were recently described to arise from the yolk sac endothelium, just prior to vascular remodeling, and are the source of adult/post-natal tissue resident macrophages. Questions remain, however, concerning whether EMPs differentiate directly from the endothelium or merely pass through. We provide the first evidence in vivo that EMPs can emerge directly from endothelial cells (ECs) and demonstrate a role for these cells in vascular development.
View Article and Find Full Text PDFBackground: Experimental studies have demonstrated that lead and cadmium have direct toxic effects on the myocardium, but the few human studies are limited by design, assessment of exposure, and use of heart failure as a late-stage endpoint.
Methods And Results: In a prospective population study, we studied the association of left ventricular (LV) function with blood lead (BPb) and 24-hour urinary cadmium (UCd). In 179 participants randomly recruited from a Flemish population (50.
Lymphatic vessels are lined by lymphatic endothelial cells (LECs), and are critical for health. However, the role of metabolism in lymphatic development has not yet been elucidated. Here we report that in transgenic mouse models, LEC-specific loss of CPT1A, a rate-controlling enzyme in fatty acid β-oxidation, impairs lymphatic development.
View Article and Find Full Text PDFMost human proteins possess amyloidogenic segments, but only about 30 are associated with amyloid-associated pathologies, and it remains unclear what determines amyloid toxicity. We designed vascin, a synthetic amyloid peptide, based on an amyloidogenic fragment of vascular endothelial growth factor receptor 2 (VEGFR2), a protein that is not associated to amyloidosis. Vascin recapitulates key biophysical and biochemical characteristics of natural amyloids, penetrates cells, and seeds the aggregation of VEGFR2 through direct interaction.
View Article and Find Full Text PDF