Publications by authors named "Lutong Fang"

This study aimed to investigate placental microblood flow perfusion in fetal growth restriction (FGR) both pre- and post-delivery, and explore the influence of LINC00473 and its downstream targets on FGR progression in trophoblast cells. Placental vascular distribution, placental vascular index (VI), CD34 expression, and histological changes were compared between control and FGR groups. FGR-related differentially expressed genes (DEGs) were analyzed and validated by quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry (IHC) in placentae.

View Article and Find Full Text PDF

Pancreatic cancer is a formidable cause of cancer-related deaths worldwide and has witnessed a more than twofold increase in incidence over the last 25 years. The most frequently occurring form of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC), accounting for the majority of pancreatic cancer cases. N6-methyladenosine (m6A), the most abundant transcript modification, has been implicated in the pathogenesis of numerous human cancers, including pancreatic cancer.

View Article and Find Full Text PDF

Dendritic cells (DCs), a driver of psoriasis pathogenesis, produce IL-23 and trigger IL-23/IL-17 cytokine axis activation. However, the mechanisms regulating IL-23 induction remain unclear. In the current study, we found that mice with E3 ligase FBXW7 deficiency in DCs show reduced skin inflammation correlated with the reduction of IL-23/IL-17 axis cytokines in the imiquimod-induced psoriasis model.

View Article and Find Full Text PDF

Background: It is well-established that patients with glioma have a poor prognosis. Although the past few decades have witnessed unprecedented medical advances, the 5-year survival remains dismally low.

Objective: This study aims to investigate the role of transmembrane protein-related genes in the development and prognosis of glioma and provide new insights into the pathogenesis of the disease.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, and the pathogenesis of SLE has not been fully elucidated. The E3 ubiquitin ligase FBXW7 has been well characterized in cancer as a tumor suppressor that can promote the ubiquitination and subsequent degradation of various oncoproteins; however, the potential role of FBXW7 in autoimmune diseases is unclear. In the present study, we identified that FBXW7 is a crucial exacerbating factor for SLE development and progression in a mouse model induced by 2, 6, 10, 14-tetramethylpentadecane (TMPD).

View Article and Find Full Text PDF