Publications by authors named "Luthman J"

Introduction: The Helping to End Addiction Long-term Initiative supports a wide range of programs to develop new or improved prevention and opioid addiction treatment strategies. An essential component of this effort is to accelerate development of non-opioid pain therapeutics. In all fields of medicine, therapeutics development is an arduous process and late-stage translational efforts such as clinical trials to validate targets are particularly complex and costly.

View Article and Find Full Text PDF

Introduction: Cerebrospinal fluid (CSF) biomarkers can identify individuals with Alzheimer's disease (AD) pathology (eg, amyloid plaques, neurofibrillary tangles), but defined analyte cut-points using high-throughput automated assays are necessary for general clinical use.

Methods: CSF amyloid β42 peptide (Aβ42), t-tau, and t-tau/Aβ42 were quantified by the Lumipulse platform in two test cohorts (A/B: Eisai BAN2401-201/MISSION AD E2609-301/302, n = 138; C: Knight Alzheimer's Disease Research Center (ADRC), n = 198), and receiver operating characteristic (ROC) curve analyses defined cut-points corresponding best to amyloid determinations using positron emission tomography (PET) imaging. The best-performing cut-point was then validated as a predictor of amyloid status in an independent cohort (D: MISSION AD E2609-301/302, n = 240).

View Article and Find Full Text PDF
Article Synopsis
  • A study was conducted to evaluate the impact of implantable cardioverter defibrillators (ICDs) on patients with continuous flow left ventricular assist devices (LVADs), using data from the Cleveland Clinic between 2004 and 2017.
  • Of the 486 patients analyzed, 79.6% had ICDs prior to LVAD implantation, but the study found no significant associations between the use of ICDs and mortality rates.
  • The findings suggest that while ICDs are associated with various complications and procedures, they do not provide a mortality benefit for patients with continuous flow LVADs.
View Article and Find Full Text PDF

The convergence of human molecular genetics and Lewy pathology of Parkinson's disease (PD) have led to a robust, clinical-stage pipeline of alpha-synuclein (α-syn)-targeted therapies that have the potential to slow or stop the progression of PD and other synucleinopathies. To facilitate the development of these and earlier stage investigational molecules, the Michael J. Fox Foundation for Parkinson's Research convened a group of leaders in the field of PD research from academia and industry, the Alpha-Synuclein Clinical Path Working Group.

View Article and Find Full Text PDF

Introduction: Changes in cerebrospinal fluid (CSF) tau and amyloid β (Aβ)42 accompany development of Alzheimer's brain pathology. Robust tau and Aβ42 immunoassays were developed to establish a tau/Aβ42 cutoff distinguishing mild-to-moderate Alzheimer's disease (AD) subjects from healthy elderly control (HC) subjects.

Methods: A CSF tau/Aβ42 cutoff criteria was chosen, which distinguished the groups and maximized concordance with amyloid PET.

View Article and Find Full Text PDF

The last decade has seen a substantial increase in research focused on the identification of blood-based biomarkers that have utility in Alzheimer's disease (AD). Blood-based biomarkers have significant advantages of being time- and cost-efficient as well as reduced invasiveness and increased patient acceptance. Despite these advantages and increased research efforts, the field has been hampered by lack of reproducibility and an unclear path for moving basic discovery toward clinical utilization.

View Article and Find Full Text PDF

The transcriptomes of cells infected with lytic and non-lytic variants of coxsackievirus B2 Ohio-1 (CVB2O) were analyzed using next generation sequencing. This approach was selected with the purpose of elucidating the effects of lytic and non-lytic viruses on host cell transcription. Total RNA was extracted from infected cells and sequenced.

View Article and Find Full Text PDF

Alzheimer's disease (AD) drug development is burdened with the current requirement to conduct large, lengthy, and costly trials to overcome uncertainty in patient progression and effect size on treatment outcome measures. There is an urgent need for the discovery, development, and implementation of novel, objectively measured biomarkers for AD that would aid selection of the appropriate subpopulation of patients in clinical trials, and presumably, improve the likelihood of successfully evaluating innovative treatment options. Amyloid deposition and tau in the brain, which are most commonly assessed either in cerebrospinal fluid (CSF) or by molecular imaging, are consistently and widely accepted.

View Article and Find Full Text PDF

Background: Development of new therapies for Alzheimer's disease (AD) is increasingly focused on more mildly affected populations, and requires new assessment and outcome strategies. Patients in early stages of AD have mild cognitive decline and no, or limited, functional impairment. To respond to these assessment challenges, we developed a measurement approach based on established scale items that exhibited change in previous amnestic Mild Cognitive Impairment (aMCI) trials.

View Article and Find Full Text PDF

The Alzheimer's Disease Neuroimaging Initiative (ADNI) Private Partner Scientific Board (PPSB) is comprised of representatives of private, for-profit entities (including pharmaceutical, biotechnology, diagnostics, imaging companies, and imaging contract research organizations), and nonprofit organizations that provide financial and scientific support to ADNI through the Foundation for the National Institutes of Health. The PPSB serves as an independent, open, and precompetitive forum in which all private sector and not-for-profit partners in ADNI can collaborate, share information, and offer scientific and private-sector perspectives and expertise on issues relating to the ADNI project. In this article, we review and highlight the role, activities, and contributions of the PPSB within the ADNI project, and provide a perspective on remaining unmet needs and future directions.

View Article and Find Full Text PDF

The Alzheimer's Disease Neuroimaging Initiative (ADNI) is an ongoing, longitudinal, multicenter study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of Alzheimer's disease (AD). The initial study, ADNI-1, enrolled 400 subjects with early mild cognitive impairment (MCI), 200 with early AD, and 200 cognitively normal elderly controls. ADNI-1 was extended by a 2-year Grand Opportunities grant in 2009 and by a competitive renewal, ADNI-2, which enrolled an additional 550 participants and will run until 2015.

View Article and Find Full Text PDF

Combination therapy has proven to be an effective strategy for treating many of the world's most intractable diseases. A growing number of investigators in academia, industry, regulatory agencies, foundations and advocacy organizations are interested in pursuing a combination approach to treating Alzheimer's disease. A meeting co-hosted by the Accelerate Cure/Treatments for Alzheimer's Disease Coalition, the Critical Path Institute and the Alzheimer's Association addressed challenges in designing clinical trials to test multiple treatments in combination and outlined a roadmap for making such trials a reality.

View Article and Find Full Text PDF

It is acknowledged that progress in combined therapeutic approaches for Alzheimer's disease (AD) will require an unprecedented level of collaboration. At a meeting co-hosted by the Accelerate Cure/Treatments for Alzheimer's Disease Coalition and the Critical Path Institute, investigators from industry, academia and regulatory agencies agreed on the need for combinatorial approaches to treating AD. The need for advancing multiple targets includes recognition for novel adaptive trial designs that incorporate existing and new biomarkers to evaluate drug effects independently and in combination.

View Article and Find Full Text PDF
Article Synopsis
  • Conifers have been key players in ecosystems for over 200 million years; the genome of Norway spruce is the first complete genome for a gymnosperm.
  • Despite its massive size (20 gigabases), the genome has a comparable number of genes to the much smaller Arabidopsis thaliana, indicating unique genomic features rather than whole-genome duplications.
  • The research reveals shared elements across conifers, highlights specific RNA expressions, and identifies diverse genomic components, paving the way for advancements in conifer forestry and breeding.
View Article and Find Full Text PDF

Neurons in the cerebellar nuclei (CN) receive inhibitory inputs from Purkinje cells in the cerebellar cortex and provide the major output from the cerebellum, but their computational function is not well understood. It has recently been shown that the spike activity of Purkinje cells is more regular than previously assumed and that this regularity can affect motor behaviour. We use a conductance-based model of a CN neuron to study the effect of the regularity of Purkinje cell spiking on CN neuron activity.

View Article and Find Full Text PDF

Schizophrenics commonly demonstrate abnormalities in central filtering capability following repetitive sensory stimuli. Such sensory inhibition deficits can be mirrored in rodents following administration of psycho-stimulatory drugs. In the present study, male Sprague-Dawley rats were implanted with brain surface electrodes to record auditory evoked EEG potentials in a paired-stimulus paradigm, using 87 dB clicks delivered 0.

View Article and Find Full Text PDF

The hallmarks of Alzheimer's disease include extracellular plaques primarily consisting of amyloid-beta peptide and intracellular neurofibrillary tangles composed of highly phosphorylated tau protein. We report that exposure of organotypic hippocampal cultures to synthetic amyloid-beta peptide(25-35) (50 microM, 96 h) causes neurodegeneration concomitant with a significant increase in tau phosphorylation at the Ser epitope (+60%). Furthermore, the level of active glycogen synthase kinase-3beta (GSK-3beta [pTyr]) was increased (+55%) after amyloid-beta peptide(25-35) exposure.

View Article and Find Full Text PDF
Article Synopsis
  • Neuroinflammation is linked to neurodegenerative diseases, with bacterial lipopolysaccharide (LPS) from Salmonella stimulating immune cells like microglia, promoting inflammation.
  • In an in vitro study using brain slice cultures from neonatal rats, exposure to LPS increased immune cell density and caused significant loss of specific neuron types (NMDA-R1 and GABA neurons) over time.
  • The neurodegeneration observed was mainly due to necrotic-like cell death and showed both necrotic and apoptotic characteristics, suggesting potential implications for understanding neurotoxic effects of LPS in the brain.
View Article and Find Full Text PDF

Pronounced neurodegeneration of hippocampal pyramidal neurons has been shown in Alzheimer's disease. The aim of this study was to establish an organotypic in vitro model for investigating effects of the amyloid beta (Abeta)-peptide on pyramidal neuron degeneration, glial cell activation and tau phosphorylation. Tissue cultures in a quasi-monolayer were obtained using roller-drum incubation of hippocampal slices from neonatal Sprague Dawley rats.

View Article and Find Full Text PDF

The effect of perinatal asphyxia on brain development was studied with organotypic cultures from substantia nigra, neostriatum and neocortex. Asphyxia was induced by immersing foetuses-containing uterine horns removed from ready-to-deliver rats into a water bath for 20 min. Following asphyxia, the pups were nursed by a surrogate dam and sacrificed after three days for preparing organotypic cultures.

View Article and Find Full Text PDF

The neurotoxic effect of the pro-inflammatory cytokine interleukin (IL)-1beta was studied in monolayer cultures, obtained using roller-drum incubation of hippocampal slices from neonatal Sprague Dawley rats. Following exposure to recombinant rat IL-1beta for four days, a concentration dependent loss was observed in the number of NMDAR1 receptor subunit immunoreactive pyramidal neurons in the cultures, reaching significance at 10 ng/ml rIL-1beta. Also incubation with recombinant mouse IL-1beta caused a loss of pyramidal neurons, with a significant effect at a concentration of 30 pg/ml.

View Article and Find Full Text PDF

Trimethyltin (TMT) chloride induces limbic system neurodegeneration, resulting in behavioral alterations including cognitive deficits. Different factors related to Alzheimer's disease (AD) were studied after TMT lesion in Sprague-Dawley rats. The expression of amyloid precursor protein (APP) containing 695 amino acids (APP695), APP containing the Kuniz protease inhibitor domain (APP- KPI), presenilin 1 (PS1), c- fos and IL- 1Beta was investigated at different timepoints after a single TMT injection (7 mg/kg i.

View Article and Find Full Text PDF