Regulation of the luminal pH of late endocytic compartments in continuously fed mammalian cells is poorly understood. Using normal rat kidney fibroblasts, we investigated the reversible assembly/disassembly of the proton pumping V-ATPase when endolysosomes are formed by kissing and fusion of late endosomes with lysosomes and during the subsequent reformation of lysosomes. We took advantage of previous work showing that sucrosomes formed by the uptake of sucrose are swollen endolysosomes from which lysosomes are reformed after uptake of invertase.
View Article and Find Full Text PDFTo provide insights into the kiss-and-run and full fusion events resulting in endocytic delivery to lysosomes, we investigated conditions causing increased tethering and pore formation between late endocytic organelles in HeLa cells. Knockout of the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) VAMP7 and VAMP8 showed, by electron microscopy, the accumulation of tethered lysosome-associated membrane protein (LAMP)-carrier vesicles around multivesicular bodies, as well as the appearance of 'hourglass' profiles of late endocytic organelles attached by filamentous tethers, but did not prevent endocytic delivery to lysosomal hydrolases. Subsequent depletion of the SNARE YKT6 reduced this delivery, consistent with it compensating for the absence of VAMP7 and VAMP8.
View Article and Find Full Text PDFNicks are the most frequent form of DNA damage and a potential source of mutagenesis in human cells. By deep sequencing, we have identified factors and pathways that promote and limit mutagenic repair at a targeted nick in human cells. Mutations were distributed asymmetrically around the nick site.
View Article and Find Full Text PDFVARP and TBC1D5 are accessory/regulatory proteins of retromer-mediated retrograde trafficking from endosomes. Using an NMR/X-ray approach, we determined the structure of the complex between retromer subunit VPS29 and a 12 residue, four-cysteine/Zn microdomain, which we term a Zn-fingernail, two of which are present in VARP. Mutations that abolish VPS29:VARP binding inhibit trafficking from endosomes to the cell surface.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2020
Interhomolog recombination (IHR) occurs spontaneously in somatic human cells at frequencies that are low but sufficient to ameliorate some genetic diseases caused by heterozygous mutations or autosomal dominant mutations. Here we demonstrate that DNA nicks or double-strand breaks (DSBs) targeted by CRISPR-Cas9 to both homologs can stimulate IHR and associated copy-neutral loss of heterozygosity (cnLOH) in human cells. The frequency of IHR is 10-fold lower at nicks than at DSBs, but cnLOH is evident in a greater fraction of recombinants.
View Article and Find Full Text PDFCHoP-In (CRISPR/Cas9-mediated Homology-independent PCR-product integration) is a fast, non-homologous end-joining based, strategy for genomic editing in mammalian cells. There is no requirement for cloning in generation of the integration donor, instead the desired integration donor is produced as a polymerase chain reaction (PCR) product, flanked by the Cas9 recognition sequences of the target locus. When co-transfected with the cognate Cas9 and guide RNA, double strand breaks are introduced at the target genomic locus and at both ends of the PCR product.
View Article and Find Full Text PDFRECQ5 (RECQL5) is one of several human helicases that dissociates RAD51-DNA filaments. The gene that encodes RECQ5 is frequently amplified in human tumors, but it is not known whether amplification correlates with increased gene expression, or how increased RECQ5 levels affect DNA repair at nicks and double-strand breaks. Here, we address these questions.
View Article and Find Full Text PDFIn addition to being the terminal degradative compartment of the cell's endocytic and autophagic pathways, the lysosome is a multifunctional signalling hub integrating the cell's response to nutrient status and growth factor/hormone signalling. The cytosolic surface of the limiting membrane of the lysosome is the site of activation of the multiprotein complex mammalian target of rapamycin complex 1 (mTORC1), which phosphorylates numerous cell growth-related substrates, including transcription factor EB (TFEB). Under conditions in which mTORC1 is inhibited including starvation, TFEB becomes dephosphorylated and translocates to the nucleus where it functions as a master regulator of lysosome biogenesis.
View Article and Find Full Text PDFDiscontinuities in only a single strand of the DNA duplex occur frequently, as a result of DNA damage or as intermediates in essential nuclear processes and DNA repair. Nicks are the simplest of these lesions: they carry clean ends bearing 3'-hydroxyl groups that can undergo ligation or prime new DNA synthesis. In contrast, single-strand breaks also interrupt only one DNA strand, but they carry damaged ends that require clean-up before subsequent steps in repair.
View Article and Find Full Text PDFNicks are the most common form of DNA damage, but they have only recently been shown to initiate damage that requires repair. Analysis of the pathways of nick repair in human cells has benefited from the development of enzymes that target nicks to specific sites in the genome and of reporters that enable rapid analysis of homology-directed repair and mutagenic end joining. Nicks undergo efficient repair by single-stranded oligonucleotide donors complementary to either the nicked or intact DNA strand, via pathways that are normally suppressed by RAD51.
View Article and Find Full Text PDFNicks are the most common form of DNA damage. The mechanisms of their repair are fundamental to genomic stability and of practical importance for genome engineering. We define two pathways that support homology-directed repair by single-stranded DNA donors.
View Article and Find Full Text PDFRhodococcus equi (R. equi) is an important pulmonary pathogen in foals that often leads to the death of the horse. The bacterium harbors a virulence plasmid that encodes numerous virulence-associated proteins (Vaps) including VapA that is essential for intracellular survival inside macrophages.
View Article and Find Full Text PDFThe endocytic delivery of macromolecules from the mammalian cell surface for degradation by lysosomal acid hydrolases requires traffic through early endosomes to late endosomes followed by transient (kissing) or complete fusions between late endosomes and lysosomes. Transient or complete fusion results in the formation of endolysosomes, which are hybrid organelles from which lysosomes are re-formed. We have used synthetic membrane-permeable cathepsin substrates, which liberate fluorescent reporters upon proteolytic cleavage, as well as acid phosphatase cytochemistry to identify which endocytic compartments are acid hydrolase active.
View Article and Find Full Text PDFTetherin (BST2/CD317) is a viral restriction factor that anchors enveloped viruses to host cells and limits viral spread. The HIV-1 Vpu accessory protein counteracts tetherin by decreasing its cell surface expression and targeting it for ubiquitin-dependent endolysosomal degradation. Although the Vpu-mediated downregulation of tetherin has been extensively studied, the molecular details are not completely elucidated.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2014
DNA nicks are the most common form of DNA damage, and if unrepaired can give rise to genomic instability. In human cells, nicks are efficiently repaired via the single-strand break repair pathway, but relatively little is known about the fate of nicks not processed by that pathway. Here we show that homology-directed repair (HDR) at nicks occurs via a mechanism distinct from HDR at double-strand breaks (DSBs).
View Article and Find Full Text PDFOne of the challenges in laser direct writing with a high numerical-aperture objective is the severe axial focal elongation and the pronounced effect of the refractive-index mismatch aberration. We present the simultaneous compensation for the refractive-index mismatch aberration and the focal elongation in three-dimensional laser nanofabrication by a high numerical-aperture objective. By the use of circularly polarized beam illumination and a spatial light modulator, a complex and dynamic slit pupil aperture can be produced to engineer the focal spot.
View Article and Find Full Text PDFMany devastating human diseases are caused by mutations in a single gene that prevent a somatic cell from carrying out its essential functions, or by genetic changes acquired as a result of infectious disease or in the course of cell transformation. Targeted gene therapies have emerged as potential strategies for treatment of such diseases. These therapies depend upon rare-cutting endonucleases to cleave at specific sites in or near disease genes.
View Article and Find Full Text PDFEMBO J 30 19, 4033–4046 (2011); published online August 26 2011 Regions bearing G-quadruplex (G4) DNA motifs can be sites of genomic instability and are frequently depleted in streamlined genomes, but are nevertheless maintained in many other genomes. Whether G4 secondary structures form , and how they are maintained or eliminated, remains little known. In this issue of , Lopes et al (2011) provide new evidence that G4 structures form and contribute to genomic instability in living cells, and identify specific mechanisms that minimize the risks posed by G4 motifs.
View Article and Find Full Text PDFTargeted gene correction employs a site-specific DNA lesion to promote homologous recombination that eliminates mutation in a disease gene of interest. The double-strand break typically used to initiate correction can also result in genomic instability if deleterious repair occurs rather than gene correction, possibly compromising the safety of targeted gene correction. Here we show that single-strand breaks (nicks) and double-strand breaks both promote efficient gene correction.
View Article and Find Full Text PDFHoming endonucleases stimulate gene conversion by generating site-specific DNA double-strand breaks that are repaired by homologous recombination. These enzymes are potentially valuable tools for targeted gene correction and genome engineering. We have engineered a variant of the I-AniI homing endonuclease that nicks its cognate target site.
View Article and Find Full Text PDFWe report the first demonstration of error-free 640 Gbit/s demultiplexing using the Kerr non-linearity of an only 5 cm long chalcogenide glass waveguide chip. Our approach exploits four-wave mixing by the instantaneous nonlinear response of chalcogenide. Excellent performance is achieved with only 2 dB average power penalty and no indication of error-floor.
View Article and Find Full Text PDFMeiosis is a specialized nuclear division by which sexually reproducing diploid organisms generate haploid gametes. Recombination between homologous chromosomes facilitates accurate meiotic chromosome segregation and is initiated by DNA double-strand breaks (DSBs) made by the conserved topoisomerase-like protein Spo11 (Rec12 in fission yeast), but DSBs are not evenly distributed across the genome. In Schizosaccharomyces pombe, proteinaceous structures known as linear elements (LinEs) are formed during meiotic prophase.
View Article and Find Full Text PDFChromosome architecture undergoes extensive, programmed changes as cells enter meiosis. A highly conserved change is the clustering of telomeres at the nuclear periphery to form the "bouquet" configuration. In the fission yeast Schizosaccharomyces pombe the bouquet and associated nuclear movement facilitate initial interactions between homologs.
View Article and Find Full Text PDFMeiosis is a specialized form of cell division by which sexually reproducing diploid organisms generate haploid gametes. During a long prophase, telomeres cluster into the bouquet configuration to aid chromosome pairing, and DNA replication is followed by high levels of recombination between homologous chromosomes (homologs). This recombination is important for the reductional segregation of homologs at the first meiotic division; without further replication, a second meiotic division yields haploid nuclei.
View Article and Find Full Text PDF