Classifying pan-cancer samples using gene expression patterns is a crucial challenge for the accurate diagnosis and treatment of cancer patients. Machine learning algorithms have been considered proven tools to perform downstream analysis and capture the deviations in gene expression patterns across diversified diseases. In our present work, we have developed PC-RMTL, a pan-cancer classification model using regularized multi-task learning (RMTL) for classifying 21 cancer types and adjacent normal samples using RNASeq data obtained from TCGA.
View Article and Find Full Text PDFHuman immunodeficiency virus (HIV) infection causes acquired immunodeficiency syndrome (AIDS), one of the most devastating diseases affecting humankind. Here, we have proposed a framework to examine the differences among microarray gene expression data of uninfected and three different HIV-1 infection stages using module preservation statistics. We leverage the advantage of gene co-expression networks (GCN) constructed for each infection stages to detect the topological and structural changes of a group of differentially expressed genes.
View Article and Find Full Text PDFPancreatic Ductal Adenocarcinoma (PDAC) is the most lethal type of pancreatic cancer, late detection leading to its therapeutic failure. This study aims to determine the key regulatory genes and their impacts on the disease's progression, helping the disease's etiology, which is still mostly unknown. We leverage the landmark advantages of time-series gene expression data of this disease and thereby identified the key regulators that capture the characteristics of gene activity patterns in the cancer progression.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is a chronic neuro-degenerative disruption of the brain which involves in large scale transcriptomic variation. The disease does not impact every regions of the brain at the same time, instead it progresses slowly involving somewhat sequential interaction with different regions. Analysis of the expression patterns of the genes in different regions of the brain influenced in AD surely contribute for a enhanced comprehension of AD pathogenesis and shed light on the early characterization of the disease.
View Article and Find Full Text PDF