Statistical and machine learning methods have proved useful in many areas of immunology. In this paper, we address for the first time the problem of predicting the occurrence of class switch recombination (CSR) in B-cells, a problem of interest in understanding antibody response under immunological challenges. We propose a framework to analyze antibody repertoire data, based on clonal (CG) group representation in a way that allows us to predict CSR events using CG level features as input.
View Article and Find Full Text PDF