Publications by authors named "Lusi Zhao"

Oxygen reduction reaction (ORR) electrocatalysts with excellent activity and high selectivity toward the efficient four-electron (4e) pathway are very important for the wide application of fuel cells and are worth searching vigorously. In this study, r-RhTe monolayer is identified as a good ORR electrocatalyst from three 2D RhTe configurations with low Rh-loading (i.e.

View Article and Find Full Text PDF

In view of the weak aromatic characteristic resulting from the weak π-bonding ability (different from the analogous graphene), employing two-dimensional (2D) silicene and germanene monolayers could be one of the most promising ways to realize a new type of highly efficient and nonprecious catalyst for the hydrogen evolution reaction (HER). However, the HER activity of pristine silicene and germanene has to be improved, although both of them can exhibit a good change trend. Particularly, the hydrogen phenomenon can occur under moderate or high H* coverage on 2D silicene and germanene.

View Article and Find Full Text PDF

One of the immediate challenges for the large-scale commercialization of hydrogen-based fuel cells is to develop cost-effective electrocatalysts to enable cathodic oxygen reduction reaction (ORR). Herein, we focus on the potential of the two-dimensional (2D) ternary chalcogenide NiSbTe monolayer as a high-performance electrocatalyst for the ORR using density function theory. Our computed results reveal that there are an obvious hybridization and electron transfer between the O 2p and Te 5p orbitals, which can activate the adsorbed oxygen and trigger the whole ORR process, with an overpotential as low as 0.

View Article and Find Full Text PDF

The development of highly efficient and cheap electrocatalysts for the oxygen evolution reaction (OER) is highly desirable in typical water-splitting electrolyzers to achieve renewable energy production, yet it still remains a huge challenge. Herein, we have presented a simple procedure to construct a new nanofibrous hybrid structure with the interface connecting the surface of CeO and CoO as a high-performance electrocatalyst toward the OER through an electrospinning-calcination-reduction process. The resultant CeO-CoO nanofibers exhibit excellent electrocatalytic properties with a small overpotential of 296 mV at 10 mA cm for the OER, which is superior to many previously reported nonprecious metal-based and commercial RuO catalysts.

View Article and Find Full Text PDF

It is of practical importance to develop a stable and accessible methane combustion catalyst which could retain an excellent activity under drastic conditions. Herein, we introduce a facile approach to extend the stability of conventional Pd/AlO catalysts through tailoring the pore size of mesoporous aluminas (MAs) and the interaction between Pd and Al. By modulating the addition of templates (deoxycholic acid and polyvinylpyrrolidone), a series of MAs with tunable and uniform pore size were obtained through a designed sol-gel method.

View Article and Find Full Text PDF