Regulatory T cells (Tregs) with multifaceted functions suppress anti-tumor immunity by signaling surrounding cells. Here we report Tregs use the surface lymphotoxin (LT)α1β2 to preferentially stimulate LT beta receptor (LTβR) nonclassical NFκB signaling on both tumor cells and lymphatic endothelial cells (LECs) to accelerate tumor growth and metastasis. Selectively targeting LTβR nonclassical NFκB pathway inhibits tumor growth and migration in vitro.
View Article and Find Full Text PDFStyle penetration by pollen tubes is essential for reproductive success, a process requiring canonical Rab5s in Arabidopsis. However, functional loss of Arabidopsis Vps9a, the gene encoding for guanine nucleotide exchange factor (GEF) of Rab5s, did not affect male transmission, implying the presence of a compensation program or redundancy. By combining genetic, cytological, and molecular approaches, we report that Arabidopsis Vps9b is a pollen-preferential gene, redundantly mediating pollen tube penetration of style with Vps9a.
View Article and Find Full Text PDFTranscriptional reprogramming is critical for plant immunity. Several calmodulin (CaM)-binding protein 60 (CBP60) family transcription factors (TFs) in Arabidopsis (Arabidopsis thaliana), including CBP60g, systemic acquired resistance deficient 1 (SARD1), CBP60a, and CBP60b, are critical for and show distinct roles in immunity. However, there are additional CBP60 members whose function is unclear.
View Article and Find Full Text PDFBackground: Despite ongoing improvements to regimens preventing allograft rejection, most cardiac and other organ grafts eventually succumb to chronic vasculopathy, interstitial fibrosis, or endothelial changes, and eventually graft failure. The events leading to chronic rejection are still poorly understood and the gut microbiota is a known driving force in immune dysfunction. We previously showed that gut microbiota dysbiosis profoundly influences the outcome of vascularized cardiac allografts and subsequently identified biomarker species associated with these differential graft outcomes.
View Article and Find Full Text PDFIntrinsic metabolism shapes the immune environment associated with immune suppression and tolerance in settings such as organ transplantation and cancer. However, little is known about the metabolic activities in an immunosuppressive environment. In this study, we employed metagenomic, metabolomic, and immunological approaches to profile the early effects of the immunosuppressant drug tacrolimus, antibiotics, or both in gut lumen and circulation using a murine model.
View Article and Find Full Text PDFPollen tubes have dynamic tubular vacuoles. Functional loss of AP-3, a regulator of one vacuolar trafficking route, reduces pollen tube growth. However, the role of canonical Rab5 GTPases that are responsible for two other vacuolar trafficking routes in Arabidopsis pollen tubes is obscure.
View Article and Find Full Text PDFFibroblastic reticular cells (FRCs) play important roles in tolerance by producing laminin α4 (Lama4) and altering lymph node (LN) structure and function. The present study revealed the specific roles of extracellular matrix Lama4 in regulating LN conduits using FRC-specific KO mouse strains. FRC-derived Lama4 maintained conduit fiber integrity, as its depletion altered conduit morphology and structure and reduced homeostatic conduit flow.
View Article and Find Full Text PDFAntigen-specific tolerance is a key goal of experimental immunotherapies for autoimmune disease and allograft rejection. This outcome could selectively inhibit detrimental inflammatory immune responses without compromising functional protective immunity. A major challenge facing antigen-specific immunotherapies is ineffective control over immune signal targeting and integration, limiting efficacy and causing systemic non-specific suppression.
View Article and Find Full Text PDFThe beneficial effects attributed to Bifidobacterium are largely attributed to their immunomodulatory capabilities, which are likely to be species- and even strain-specific. However, their strain-specificity in direct and indirect immune modulation remain largely uncharacterized. We have shown that B.
View Article and Find Full Text PDFThe lymph node (LN) is the primary site of alloimmunity activation and regulation during transplantation. Here, we investigated how fibroblastic reticular cells (FRCs) facilitate the tolerance induced by anti-CD40L in a murine model of heart transplantation. We found that both the absence of LNs and FRC depletion abrogated the effect of anti-CD40L in prolonging murine heart allograft survival.
View Article and Find Full Text PDFLymph node (LN) fibroblastic reticular cells (FRCs) define LN niches and regulate lymphocyte homeostasis through producing diverse extracellular matrix (ECM) components. We examined the role of ECM laminin α4 (Lama4) using FRC-Lama4 conditional KO Pdgfrb-Cre-/- × Lama4fl/fl mice. Single-cell RNA-sequencing (scRNA-Seq) data showed the promoter gene Pdgfrb was exclusively expressed in FRCs.
View Article and Find Full Text PDFProgrammed death-1 (PD-1) and its ligand PD-L1 are checkpoint molecules which regulate immune responses. Little is known about their functions in T cell migration and there are contradictory data about their roles in regulatory T cell (Treg) function. Here we show activated Tregs and CD4 effector T cells (Teffs) use PD-1/PD-L1 and CD80/PD-L1, respectively, to regulate transendothelial migration across lymphatic endothelial cells (LECs).
View Article and Find Full Text PDFRegulatory T cell (Treg) lymphatic migration is required for resolving inflammation and prolonging allograft survival. Focusing on Treg interactions with lymphatic endothelial cells (LECs), we dissect mechanisms and functional consequences of Treg transendothelial migration (TEM). Using three genetic mouse models of pancreatic islet transplantation, we show that Treg lymphotoxin (LT) αβ and LEC LTβ receptor (LTβR) signaling are required for efficient Treg migration and suppressive function to prolong allograft survival.
View Article and Find Full Text PDFLymph nodes (LNs), where immune responses are initiated, are organized into distinctive compartments by fibroblastic reticular cells (FRCs). FRCs imprint immune responses by supporting LN architecture, recruiting immune cells, coordinating immune cell crosstalk, and presenting antigens. Recent high-resolution transcriptional and histological analyses have enriched our knowledge of LN FRC genetic and spatial heterogeneities.
View Article and Find Full Text PDFThe development of male and female gametophytes is a pre-requisite for successful reproduction of angiosperms. Factors mediating vesicular trafficking are among the key regulators controlling gametophytic development. Fusion between vesicles and target membranes requires the assembly of a fusogenic soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) complex, whose disassembly in turn ensures the recycle of individual SNARE components.
View Article and Find Full Text PDFPlants use a dual defense system to cope with microbial pathogens. The first involves pathogen-associated molecular pattern-triggered immunity which is conferred by membrane receptors, and the second involves effector-triggered immunity (ETI), which is conferred by disease-resistance proteins (nucleotide-binding leucine-rich repeat-containing proteins; NLRs). Calmodulin-Binding Protein 60 (CBP60) family transcription factors are crucial for pathogen defense: CBP60g and Systemic Acquired Resistance Deficient 1 (SARD1) positively regulate immunity, whereas CBP60a negatively regulates immunity.
View Article and Find Full Text PDFJ Integr Plant Biol
April 2021
Gametophyte development is a pre-requisite for plant reproduction and seed yield; therefore, studies of gametophyte development help us understand fundamental biological questions and have potential applications in agriculture. The biogenesis and dynamics of endomembrane compartments are critical for cell survival, and their regulatory mechanisms are just beginning to be revealed. Here, we report that the Arabidopsis thaliana SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) protein YKT61 is essential for both male and female gametogenesis.
View Article and Find Full Text PDFLymph node stromal cells (LNSCs) regulate immunity through constructing lymphocyte niches. LNSC-produced laminin α5 (Lama5) regulates CD4+ T cells but the underlying mechanisms of its functions are poorly understood. Here we show that depleting Lama5 in LNSCs resulted in decreased Lama5 protein in the LN cortical ridge (CR) and around high endothelial venules (HEVs).
View Article and Find Full Text PDFRegulatory T cells (Tregs) express high levels of cell surface lymphotoxin alpha beta (LTα1β2) to activate the LT beta receptor (LTβR) on the lymphatic endothelial cells (LECs), modulating LEC adhesion molecules, intercellular junctions, and chemokines. We demonstrate a role for Tregs through this pathway to condition the permissiveness of lymphatic endothelia for transendothelial migration (TEM), thus gating leukocyte traffic. Human Tregs share the same property with murine Tregs.
View Article and Find Full Text PDFLymph nodes (LNs) are at the cross roads of immunity and tolerance. These tissues are compartmentalized into specialized niche areas by lymph node stromal cells (LN SCs). LN SCs shape the LN microenvironment and guide immunological cells into different zones through establishment of a CCL19 and CCL21 gradient.
View Article and Find Full Text PDF