Successful bone regeneration requires close cooperation between bone marrow mesenchymal stem cells (BMSCs) and macrophages, but the low osteogenic differentiation efficiency of stem cells and the excessive inflammatory response of immune cells hinder the development of bone repair. It is necessary to develop a strategy that simultaneously regulates the osteogenic differentiation of BMSCs and the anti-inflammatory polarization of macrophages for accelerating the bone regeneration. Herein, calcium-chlorogenic acid nanoparticles (Ca-CGA NPs) are synthesized by combining the small molecules of chlorogenic acid (CGA) with Ca.
View Article and Find Full Text PDFBackground: Follow-up of cochlear implant effectiveness is mainly focused on 3 years postoperatively, and studies with more than 5 years of observation are rare, especially for local Chinese brands.
Objectives: Nurotron (Chinese domestic cochlear implant brand) CI recipients who participated in the clinical trial in 2009 were followed-up for 10 years prospectively, providing data to guide doctors and patients.
Material And Methods: From December 2009 to April 2010, 57 subjects underwent Nurotron Venus CI surgery at multiple-centers, and were continued to be followed up and assessed at 1, 2, 3, 4, 5, and 10 years after switch on.
Spinal cord injury (SCI) has no effective treatment modalities. It faces a significant global therapeutical challenge, given its features of poor axon regeneration, progressive local inflammation, and inefficient systemic drug delivery due to the blood-spinal cord barrier (BSCB). To address these challenges, a new nano complex that achieves targeted drug delivery to the damaged spinal cord is proposed, which contains a mesoporous silica nanoparticle core loaded with microRNA and a cloaking layer of human umbilical cord mesenchymal stem cell membrane modified with rabies virus glycoprotein (RVG).
View Article and Find Full Text PDFNeuropharmacology
January 2019
The development of therapeutic interventions for hearing loss requires a detailed understanding of the genes and proteins involved in hearing. The FOXG1 protein plays an important role in early neural development and in a variety of neurodevelopmental disorders. Previous studies have shown that there are severe deformities in the inner ear in Foxg1 knockout mice, but due to the postnatal lethality of Foxg1 knockout mice, the role of FOXG1 in hair cell (HC) development and survival during the postnatal period has not been investigated.
View Article and Find Full Text PDFCochlear inner hair cell (IHC) ribbon synapses play an important role in sound encoding and neurotransmitter release. Previous reports show that both noise and aminoglycoside exposures lead to reduced numbers and morphologic changes of synaptic ribbons. In this work, we determined the distribution of N-methyl-D-aspartate receptors (NMDARs) and their role in the gentamicin-induced pathological changes of cochlear IHC ribbon synaptic elements.
View Article and Find Full Text PDFEnlarged vestibular aqueduct (EVA)‑associated hearing loss is frequently detected in individuals carrying the SLC26A4 mutation in the Chinese population. The present study aimed to identify the causative SLC26A4 coding mutations in a patient group with nonsyndromic hearing loss (NSHL) and EVA. Genomic DNA was extracted from blood samples obtained from 52 NSHL patients with EVA and from 60 normal controls.
View Article and Find Full Text PDF