Publications by authors named "Lurdes Ciriaco"

Perovskites of the (La,Ba)(Fe,Ti)O family were prepared, characterized, and utilized as heterogeneous photocatalysts, activated by natural sunlight, for environmental remediation of Acid Orange 7 (AO7) aqueous solutions. Catalysts were prepared by the ceramic (CM) and the complex polymerization (CP) methods and characterized by XRD, SEM, EDS, and band gap energy. It was found that catalytic properties depend on the synthesis method and annealing conditions.

View Article and Find Full Text PDF

Complex wastewater matrices present a major environmental concern. Besides the biodegradable organics, they may contain a great variety of toxic chemicals, heavy metals, and other xenobiotics. The electrochemically activated persulfate process, an efficient way to generate sulfate radicals, has been widely applied to the degradation of such complex effluents with very good results.

View Article and Find Full Text PDF

The aim of this work was to evaluate the pollutant load from tannery effluents treated by chemical coagulation (CC) followed by electro-oxidation (EO), performed in two different experimental batch-recirculated setups, one with a BDD anode and the other with Ti/Pt/PbO and Ti/Pt/SnO-SbO anodes (PS). Results were compared with those obtained from EO of the raw sample. CC was performed with a Fe concentration of 0.

View Article and Find Full Text PDF

This paper studies the degradation of methiocarb, a highly hazardous pesticide found in waters and wastewaters, through an electro-Fenton process, using a boron-doped diamond anode and a carbon felt cathode; and evaluates its potential to reduce toxicity towards the model organism . The influence of applied current density and type and concentration of added iron source, Fe(SO)·5HO or FeCl·6HO, is assessed in the degradation experiments of methiocarb aqueous solutions. The experimental results show that electro-Fenton can be successfully used to degrade methiocarb and to reduce its high toxicity towards .

View Article and Find Full Text PDF

Perovskite oxides BaFeTiO, with y = 0, 0.6, 0.8 and 1, were prepared by ceramic (CM) and complex polymerization methods (CPM) and utilized in UV-LED (365 nm) photocatalytic degradation assays of 25 mg L diclofenac (DIC) model solutions.

View Article and Find Full Text PDF

The electrooxidation of methiocarb and bisphenol A was studied in complex matrices, namely, simulated and real sanitary landfill leachate samples, using a boron-doped diamond anode. With simulated sanitary landfill leachate samples, the influence of the type and ratio of carbon source (glucose/humic acid) and electrolyte (NaCl or NaSO) on the emerging contaminants removal was assessed. Using real sanitary landfill leachate, the influence of current density was evaluated.

View Article and Find Full Text PDF

Electrochemical technologies have been broadly applied in wastewaters treatment, but few studies have focused on comparing the performance of the different electrochemical processes, especially when used to treat highly-polluted streams. The electrochemical treatment of a reverse osmosis concentrate of sanitary landfill leachate was performed by means of electrocoagulation (EC), anodic oxidation (AO) and electro-Fenton (EF) processes, and the use of different electrode materials and experimental conditions was assessed. All the studied processes and experimental conditions were effective in organic load removal.

View Article and Find Full Text PDF

In this study, the efficiency of electrochemical oxidation to treat a sanitary landfill leachate was evaluated by the reduction in physico-chemical parameters and in ecotoxicity. The acute toxicity of the sanitary landfill leachates, before and after treatment, was assessed with the model organism Daphnia magna. Electrochemical oxidation treatment was effective in the removal of organic load and ammonium nitrogen and in the reduction of metal ions concentrations.

View Article and Find Full Text PDF

The electro-Fenton oxidation of a concentrate from reverse osmosis of a sanitary landfill leachate, with an initial chemical oxygen demand (COD) of 42 g L, was carried out using a carbon-felt cathode and a boron doped diamond anode. The influence of the applied current intensity, initial pH and dissolved iron initial concentration on the electro-Fenton process was assessed. For the experimental conditions used, results showed that the initial pH is the parameter that more strongly influences the current efficiency of the electro-Fenton process, being this influence more pronounced on the oxidation rate than on the mineralization rate of the organic matter.

View Article and Find Full Text PDF

Conventional sanitary landfill leachate treatment has recently been complemented and, in some cases, completely replaced by reverse osmosis technology. Despite the good quality of treated water, the efficiency of the process is low and a large volume of reverse osmosis concentrate has to be either discharged or further treated. In this study, the use of anodic oxidation combined with electro-Fenton processes to treat the concentrate obtained in the reverse osmosis of sanitary landfill leachate was evaluated.

View Article and Find Full Text PDF

The behaviors of the electrodes Ti/PbO2 and Ti/Pt/PbO2 as anodes in the electro-oxidation of two antibiotics-tetracycline and oxytetracycline-were evaluated at different applied current densities, to evaluate the influence of the Pt interlayer. In the preparation of the electrodes, the electrodeposited β-PbO2 phase was homogeneous; no Ti or Pt peaks were detected in the diffractograms. The β-PbO2 surface presented significant roughness when deposited over the Pt interlayer, which also conferred significant conductivity to the material.

View Article and Find Full Text PDF

Boron-doped diamond (BDD) and Ti/Pt/PbO anodes were utilized to perform the electrodegradation of synthetic samples containing humic acid in the presence of different organic and inorganic carbon-containing and nitrogen-containing compounds. The influence of the chloride ion in the degradation process of the different synthetic samples was also assessed. The results showed that the anodic oxidation process can efficiently degrade recalcitrant compounds such as humic acid.

View Article and Find Full Text PDF

Anodic oxidation at a boron-doped diamond anode of cork boiling wastewater was successfully used for mineralization and biodegradability enhancement required for effluent discharge or subsequent biological treatment, respectively. The influence of the applied current density (30-70 mA/cm2) and the background electrolyte concentration (0-1.5 g/L Na2SO4) on the performance of the electrochemical oxidation was investigated.

View Article and Find Full Text PDF