Publications by authors named "Luquan Zhang"

Background: Phosphofructokinase P (PFKP) is a key rate-limiting enzyme in glycolysis, playing a crucial role in various pathophysiological processes. However, its specific function in tumors remains unclear. This study aims to evaluate the expression and specific role of PFKP across multiple tumor types (Pan-cancer) and to explore its potential clinical significance as a therapeutic target in cancer treatment.

View Article and Find Full Text PDF

We previously reported lncRNA HAR1A as a tumor suppressor in non-small cell lung cancer (NSCLC). However, the delicate working mechanisms of this lncRNA remain obscure. Herein, we demonstrated that the ectopic expression of HAR1A inhibited the proliferation, epithelial-mesenchymal transition (EMT), migration, and invasion of NSCLC cells and enhanced paclitaxel (PTX) sensitivity in vitro and in vivo.

View Article and Find Full Text PDF

Background: Oesophageal squamous cell carcinoma (ESCC) is a lethal malignancy. Immune checkpoint inhibitors (ICIs) showed great clinical benefits for patients with ESCC. We aimed to construct a model predicting prognosis and response to ICIs by integrating diverse programmed cell death (PCD) forms.

View Article and Find Full Text PDF

Background: Neoadjuvant administration of immune checkpoint inhibitors (ICIs) combined with chemotherapy demonstrated promising efficacy and manageable safety in locally advanced esophageal squamous cell carcinoma (ESCC). This prospective, single-arm, phase 2 study evaluated the efficacy and safety of neoadjuvant therapy with camrelizumab plus paclitaxel and nedaplatin for 2-4 cycles in ESCC.

Methods: Patients with locally advanced stage IIa-IIIb ESCC were enrolled in the study and received camrelizumab (200 mg), paclitaxel (155 mg/m 2 ), and nedaplatin (80 mg/m 2 ) intravenously on day one every 3 weeks.

View Article and Find Full Text PDF

Nucleoporin 93 (NUP93) is an important component of the nuclear pore complex, exhibiting pro-tumorigenic properties in some cancers. However, its function in esophageal squamous cell carcinoma (ESCC) has not been elucidated. This study aimed to investigate the effects of NUP93 in ESCC and the underlying mechanisms involved.

View Article and Find Full Text PDF

Patched homolog 1 (PTCH1) has been proven to facilitate cell proliferation and self-renewal in esophageal cancer (EC). The present study intended to exploit the influence of PTCH1 on EC cells and the potential mechanisms. PTCH1 and methyltransferase-like 3 (METTL3) expression were examined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot in EC cell lines.

View Article and Find Full Text PDF

Background: Cuproptosis is a novel mitochondrial respiration-dependent cell death mechanism induced by copper that can kill cancer cells via copper carriers in cancer therapy. However, the clinical significance and prognostic value of cuproptosis in lung adenocarcinoma (LUAD) remains unclear.

Methods: We performed a comprehensive bioinformatics analysis of the cuproptosis gene set, including copy number aberration, single-nucleotide variation, clinical characteristics, survival analysis, etc.

View Article and Find Full Text PDF
Article Synopsis
  • Immune checkpoint inhibitors (ICIs) combined with chemotherapy show promising results in treating locally advanced esophageal squamous cell carcinoma (ESCC), with nearly 39% of patients achieving a complete pathological response after neoadjuvant therapy.
  • A study involving 18 patients indicated a postoperative evaluation revealed that most patients (61.1%) had a partial response, with acceptable side effects reported for the treatment regimen.
  • Analyzed tumor microenvironment (TME) immune profiles showed increased CD8+ T cells and reduced M2-like macrophages after treatment, suggesting a beneficial immune response underlying the effectiveness of the therapy.
View Article and Find Full Text PDF

Objective: This research sought to explore the effect and mechanism of long non-coding RNA SNHG16 on esophageal cancer (EC) cell proliferation and self-renewal.

Methods: SNHG16 expression was measured in EC9706 and KYSE150 cells. EC9706 and KYSE150 cells were transfected with Lenti-SNHG16, sh-SNHG16, Lenti-protein patched homolog 1 (PTCH1), miR-802 mimic, or miR-802 inhibitor.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small non-coding RNAs that are closely associated with cancer progression and drug resistance, however, up until now, the involvement of miR-556-5p in regulating cisplatin-sensitivity in non-small cell lung cancer (NSCLC) has not been studied. In the present study, we found that miR-556-5p was significantly upregulated in the cisplatin-resistant NSCLC (CR-NSCLC) patients' tissues and cells, instead of the corresponding cisplatin-sensitive NSCLC (CS-NSCLC) tissues and cells. Further experiments validated that knock-down of miR-556-5p suppressed cell viability and tumorigenesis, and induced cell apoptosis in the cisplatin-treated CR-NSCLC cells, and conversely, upregulation of miR-556-5p increased cisplatin-resistance in CS-NSCLC cells.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Salvia Miltiorrhiza Radix et Rhizoma (Danshen) and Chuanxiong Rhizoma (Chuanxiong) are both traditional Chinese medicines with vascular protective effects, and their combination is widely used in China to treat occlusive or ischemic diseases of the cerebrovascular or cardiovascular system. Although it is widely accepted that these diseases have high relevance to inflammation, little is known about the anti-inflammatory effect of Danshen, Chuanxiong, and their combination.

Aim Of Study: We aimed to investigate the complex mode of action of Danshen, Chuanxiong, and their combination and the molecular mechanisms underlying their anti-inflammatory activity.

View Article and Find Full Text PDF

Aims: This is a pharmacokinetic study of Salviae miltiorrhizae and ligustrazine hydrochloride injection. The study aimed to evaluate the mechanism of action, safety and rational clinical use of Salviae miltiorrhizae and ligustrazine hydrochloride injection.

Background: Salviae miltiorrhizae and ligustrazine hydrochloride injection is a compound preparation consisted of Salvia miltiorrhiza extract and ligustrazine hydrochloride for the treatment of cardiovascular and cerebrovascular diseases in China.

View Article and Find Full Text PDF

As an oxygenated tetracyclic triterpenoid, Cucurbitacin E (CuE) possesses potential antitumor properties in sorts of malignancies. However, its effect on human esophageal carcinoma cells has not been previously unearthed, and the mechanism underlying its anticarcinoma activity remains vague. Hence, this study was arranged to probe the function of CuE on esophageal carcinoma cells and its specific mechanism.

View Article and Find Full Text PDF

Background: Danshen (Salvia Miltiorrhiza Radix et Rhizoma) is a valued herbal plant widely used to treat cardiovascular diseases in Asian countries. In modern medicine, innate immunity-induced inflammation is considered a risk factor for cardiovascular diseases. However, little is known about the anti-inflammatory effects and molecular mechanism of Danshen.

View Article and Find Full Text PDF

Danshensu (DSS) is a water-soluble phenolic compound in Danshen (Salvia Miltiorrhiza Radix et Rhizoma). Although various pharmacological activities have been recognized, little is known regarding its anti-inflammatory effect and related molecular mode of action. In the current study, bone marrow-derived macrophages (BMMs) were activated by a Toll-like receptor 2 (TLR2) agonist Pam3CSK4 with or without DSS intervention.

View Article and Find Full Text PDF

Background: Non-small cell lung cancer (NSCLC) is the most common cancer and the pathogenesis remain unclear. According to the competing endogenous RNA (ceRNA) theory, long noncoding RNA (lncRNA) have a competition with mRNAs for the connecting with miRNAs that affecting the level of mRNA. In this work, the ceRNA network and the important genes to predict the survival prognosis were explored.

View Article and Find Full Text PDF

During cardiac ischemia and end-stage heart disease, a large number of cardiac cells are apoptotic, and therefore, heart function is impaired. Although the role of Shp-2 in cell survival has been reported, its regulation of cardiac apoptosis is still undetermined. To better understand the potential role of Shp-2 in apoptosis, cell death was determined in serum-depleted cardiomyocytes.

View Article and Find Full Text PDF