Supporting healthy pregnancy outcomes requires a comprehensive understanding of the cellular hierarchy and underlying molecular mechanisms in the primate placenta during gestation. Here, we present a single-cell transcriptome-wide view of the cynomolgus macaque placenta throughout gestation. Bioinformatics analyses and multiple validation experiments suggested that placental trophoblast cells exhibited stage-specific differences across gestation.
View Article and Find Full Text PDFOur understanding of human early development is severely hampered by limited access to embryonic tissues. Due to their close evolutionary relationship with humans, nonhuman primates are often used as surrogates to understand human development but currently suffer from a lack of in vivo datasets, especially from gastrulation to early organogenesis during which the major embryonic cell types are dynamically specified. To fill this gap, we collected six Carnegie stage 8-11 cynomolgus monkey (Macaca fascicularis) embryos and performed in-depth transcriptomic analyses of 56,636 single cells.
View Article and Find Full Text PDFRoles of bulk-, micron-, and nano-copper oxide (CuO) on methane production, microbial diversity, functions during thermophilic anaerobic digestion (AD) were investigated in this study. Results showed that bulk-, micron-, and nano-CuO promoted methane production by 27.8%, 47.
View Article and Find Full Text PDFThis work investigated the metagenomics-based behavior of antibiotic resistance genes (ARGs) during cattle manure anaerobic digestion with zinc oxide nanoparticles (ZnO NPs) that are commonly used as animal feed additives. The 6.6% decrease in total ARGs abundance while remained unchanged ARGs diversity with ZnO NPs (5 mg/g total solid), suggested ZnO NPs may mitigate ARGs risk by abundance.
View Article and Find Full Text PDFHeavy crude oil has poor solubility and a high density, making recovery and transport much more difficult and expensive than for light crude oil. Emulsifiers can be used to produce low viscosity oil-in-water emulsions for recovery and transport, but subsequent demulsification can be challenging. Here, we develop and implement interfacially active, pH-responsive polymer-coated nanoparticles (PNPs) to reversibly stabilize, recover, and break oil/water emulsions through variation of solution pH.
View Article and Find Full Text PDF