To reduce the cost of docosahexaenoic acid (DHA) production from Schizochytrium sp., the waste Pichia pastoris was successfully used as an alternative nitrogen source to achieve high-density cultivation during the cell growth phase. However, due to the high oxygen consumption feature when implementing high-density cultivation, the control of both the nitrogen source and dissolved oxygen concentration (DO) at each sufficient level was impossible; thus, two realistic control strategies, including "DO sufficiency-nitrogen limitation" and "DO limitation-nitrogen sufficiency", were proposed.
View Article and Find Full Text PDFis a precious edible and medicinal fungus with activities of antitumor, antivirus, and immunoregulation. Fe was found to promote the asexual sporulation of markedly, but the molecular regulatory mechanism of the effect is unclear. In the present study, comparative transcriptomics analysis using RNA sequencing (RNA-seq) and real time quantitative PCR (RT-qPCR) were conducted on mycelia cultured in the presence or absence of Fe to reveal the molecular regulatory mechanisms underlying iron-ion-promoted asexual sporulation.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2021
In human lysozyme (hLYZ) production by Pichia pastoris, the glycerol fed-batch phase was generally implemented under the environment of "oxygen sufficient-glycerol limited" to achieve high cell-density cultivation during the cell growth phase. However, the structural and functional components in P. pastoris cells were irreversible damaged with more and more reactive oxygen species (ROS) accumulation when cells were exposed to the oxygen sufficient environments for long time, leading to a failure of hLYZ expression.
View Article and Find Full Text PDFHeterologous proteins induction by methylotrophic recombinant Pichia pastoris is generally implemented at high cells density condition. Methanol concentration (MeOH) and dissolved oxygen concentration (DO) are two crucial operating parameters controlling proteins production. It is difficult to control MeOH/DO at their desired levels simultaneously due to the extremely high oxygen consumption features.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
February 2018
In heterologous protein productions by Pichia pastoris, methanol induction is generally initiated when cell density reaches very high level. However, this traditional strategy suffers with the problems of difficulty in DO control, toxic by-metabolites accumulation and low targeted protein titer. Therefore, initiating methanol induction at lower cell concentration is considered as an alternative strategy to overcome those problems.
View Article and Find Full Text PDFIn heterologous protein productions by P. pastoris, methanol induction is generally initiated when cell concentration reaches very high density. The alternative strategy by initiating methanol induction at lower cells concentration was also reported to be effective in easing DO control, reducing toxic by-metabolites accumulation and increasing targeted proteins titers.
View Article and Find Full Text PDF