Publications by authors named "Luptak I"

Unlabelled: Cardiac amyloidosis is a restrictive cardiomyopathy for which diuretics are frequently used, but vasodilators have classically been relatively contraindicated due to side effects of hypotension. In the setting of decompensated heart failure, this may not be the case. We report a man with advanced cardiac amyloidosis who presented to the hospital with decompensated heart failure, in part, due to elevated systemic vascular resistance.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy is one of the most common inherited cardiomyopathies and a leading cause of sudden cardiac death in young adults. Despite profound insights into the genetics, there is imperfect correlation between mutation and clinical prognosis, suggesting complex molecular cascades driving pathogenesis. To investigate this, we performed an integrated quantitative multi-omics (proteomic, phosphoproteomic, and metabolomic) analysis to illuminate the early and direct consequences of mutations in myosin heavy chain in engineered human induced pluripotent stem-cell-derived cardiomyocytes relative to late-stage disease using patient myectomies.

View Article and Find Full Text PDF

Background: Elevated myocardial intracellular sodium ([Na]) was shown to decrease mitochondrial calcium ([Ca]) via mitochondrial sodium/calcium exchanger (NCX), resulting in decreased mitochondrial ATP synthesis. The sodium-glucose co-transporter 2 inhibitor (SGLT2i) ertugliflozin (ERTU) improved energetic deficit and contractile dysfunction in a mouse model of high fat, high sucrose (HFHS) diet-induced diabetic cardiomyopathy (DCMP). As SGLT2is were shown to lower [Na] in isolated cardiomyocytes, we hypothesized that energetic improvement in DCMP is at least partially mediated by a decrease in abnormally elevated myocardial [Na].

View Article and Find Full Text PDF

Besides acute respiratory distress syndrome, acute cardiac injury is a major complication in severe coronavirus disease 2019 (COVID-19) and is associated with a poor clinical outcome. Acute cardiac injury with COVID-19 can be of various etiologies, including myocardial ischemia or infarction and myocarditis, and may compromise cardiac function, resulting in acute heart failure or cardiogenic shock. Systemic inflammatory response increases heart rate (HR), which disrupts the myocardial oxygen supply/demand balance and worsens cardiac energy efficiency, thus further deteriorating the cardiac performance of the injured myocardium.

View Article and Find Full Text PDF

Background: Current heart failure therapies unload the failing heart without targeting the underlying problem of reduced cardiac contractility. Traditional inotropes (ie, calcitropes) stimulate contractility via energetically costly augmentation of calcium cycling and worsen patient survival. A new class of agents-myotropes-activates the sarcomere directly, independent of calcium.

View Article and Find Full Text PDF

Background Inhibitors of the sodium-glucose linked transporter 2 improve cardiovascular outcomes in patients with or without type 2 diabetes mellitus, but the effects on cardiac energetics and mitochondrial function are unknown. We assessed the effects of sodium-glucose linked transporter 2 inhibition on mitochondrial function, high-energy phosphates, and genes encoding mitochondrial proteins in hearts of mice with and without diet-induced diabetic cardiomyopathy. Methods and Results Mice fed a control diet or a high-fat, high-sucrose diet received ertugliflozin mixed with the diet (0.

View Article and Find Full Text PDF

Background: SERCA [sarco(endo)plasmic reticulum calcium ATPase] is regulated by oxidative posttranslational modifications at cysteine 674 (C674). Because sarcoplasmic reticulum (SR) calcium has been shown to play a critical role in mediating mitochondrial dysfunction in response to reactive oxygen species, we hypothesized that SERCA oxidation at C674 would modulate the effects of reactive oxygen species on mitochondrial calcium and mitochondria-dependent apoptosis in cardiac myocytes.

Methods: Adult rat ventricular myocytes expressing wild-type SERCA2b or a redox-insensitive mutant in which C674 is replaced by serine (C674S) were exposed to HO (100 µmol/Lμ).

View Article and Find Full Text PDF

Mice with obesity and metabolic heart disease (MHD) due to a high-fat, high-sucrose diet were treated with placebo, a clinically relevant dose of sacubitril (SAC)/valsartan (VAL), or an equivalent dose of VAL for 4 months. There were striking differences between SAC/VAL and VAL with regard to: 1) diastolic dysfunction; 2) interstitial fibrosis; and to a lesser degree; 3) oxidative stress-all of which were more favorably affected by SAC/VAL. SAC/VAL and VAL similarly attenuated myocardial hypertrophy and improved myocardial energetics.

View Article and Find Full Text PDF
Article Synopsis
  • Cardiovascular diseases are a major global health issue, often linked to high levels of reactive oxygen and nitrogen species, which can lead to cell damage.
  • Glutathione acts as the body's primary antioxidant, influencing cellular functions through a process called GSylation, where it forms reversible disulfide bonds with proteins.
  • Glutaredoxins (Glrxs) help manage GSylated proteins and are involved in redox signaling, making them significant in various cardiovascular conditions and potential therapeutic targets, especially glutaredoxin-1 (Glrx).
View Article and Find Full Text PDF
Article Synopsis
  • Multiplexed imaging is crucial for studying how organs like the heart and brown adipose tissue utilize different substrates, especially under certain health conditions.
  • Optical imaging is beneficial due to its affordability, efficiency, and ability to provide multiple data types, but the lack of suitable probes has limited its use in measuring substrate metabolism.
  • A new near-infrared tracer called AlexaFFA has been developed, which allows for in vivo imaging and quantification of free fatty acid uptake in deep tissues, showing significant increases in uptake during conditions like fasting and cold exposure in both the heart and brown adipose tissue.
View Article and Find Full Text PDF

Metabolic heart disease (MHD), which is strongly associated with heart failure with preserved ejection fraction, is characterized by reduced mitochondrial energy production and contractile performance. In this study, we tested the hypothesis that an acute increase in ATP synthesis, via short chain fatty acid (butyrate) perfusion, restores contractile function in MHD. Isolated hearts of mice with MHD due to consumption of a high fat high sucrose (HFHS) diet or on a control diet (CD) for 4 months were studied using P NMR spectroscopy to measure high energy phosphates and ATP synthesis rates during increased work demand.

View Article and Find Full Text PDF
Article Synopsis
  • AAVs (adeno-associated viruses) are effective for gene delivery in research and therapy due to their safety, low immune response, and long-term expression capabilities.
  • An improved protocol for isolating purified AAVs was developed using a combination of polyethylene glycol precipitation and iodixanol gradient purification, achieving higher yields with fewer cells than traditional methods.
  • The study demonstrated the successful in vivo application of the improved AAVs by effectively reducing Glrx expression in liver and muscle tissues.
View Article and Find Full Text PDF

Calcium (Ca), an important second messenger, regulates many cellular activities and varies spatiotemporally within the cell. Conventional methods to monitor Ca changes, such as synthetic Ca indicators, are not targetable, while genetically encoded Ca indicators (GECI) can be precisely directed to cellular compartments. GECIs are chimeric proteins composed of calmodulin (or other proteins that change conformation on Ca binding) coupled with two fluorescent proteins that come closer together after an increase in [Ca], and enhance Förster resonance energy transfer (FRET) that allows for ratiometric [Ca] assessment.

View Article and Find Full Text PDF

Metabolic syndrome is associated with metabolic heart disease (MHD) that is characterized by left ventricular (LV) hypertrophy, interstitial fibrosis, contractile dysfunction, and mitochondrial dysfunction. Overexpression of catalase in mitochondria (transgenic expression of catalase targeted to the mitochondria [mCAT]) prevents the structural and functional features of MHD caused by a high-fat, high-sucrose (HFHS) diet for ≥4 months. However, it is unclear whether the effect of mCAT is due to prevention of reactive oxygen species (ROS)-mediated cardiac remodeling, a direct effect on mitochondrial function, or both.

View Article and Find Full Text PDF

Wild-type transthyretin amyloidosis (ATTRwt) results in an infiltrative cardiomyopathy often culminating in symptomatic heart failure. The use of cardiopulmonary exercise testing (CPET) in determining outcomes in ATTRwt cardiac amyloidosis is unknown. Given the emergence of novel therapies to treat transthyretin amyloidosis, we sought to investigate the utility of CPET on outcomes in patients with ATTRwt cardiomyopathy.

View Article and Find Full Text PDF

Mice challenged with lipopolysaccharide develop cardiomyopathy in a sex and redox-dependent fashion. Here we extended these studies to the cecal ligation and puncture (CLP) model.We compared male and female FVB mice (wild type, WT) and transgenic littermates overexpressing myocardial catalase (CAT).

View Article and Find Full Text PDF

Background: Substrate utilization in tissues with high energetic requirements could play an important role in cardiometabolic disease. Current techniques to assess energetics are limited by high cost, low throughput, and the inability to resolve multiple readouts simultaneously. Consequently, we aimed to develop a multiplexed optical imaging platform to simultaneously assess energetics in multiple organs in a high throughput fashion.

View Article and Find Full Text PDF

Metabolic syndrome is a cluster of obesity-related metabolic abnormalities that lead to metabolic heart disease (MHD) with left ventricular pump dysfunction. Although MHD is thought to be associated with myocardial energetic deficiency, two key questions have not been answered. First, it is not known whether there is a sufficient energy deficit to contribute to pump dysfunction.

View Article and Find Full Text PDF

Pathological cardiac hypertrophy may be associated with reduced expression of glucose transporter 4 (GLUT4) in contrast to exercise-induced cardiac hypertrophy, where GLUT4 levels are increased. However, mice with cardiac-specific deletion of GLUT4 (G4H) have normal cardiac function in the unstressed state. This study tested the hypothesis that cardiac GLUT4 is required for myocardial adaptations to hemodynamic demands.

View Article and Find Full Text PDF

Background: Mitochondrial reactive oxygen species (ROS) are associated with metabolic heart disease (MHD). However, the mechanism by which ROS cause MHD is unknown. We tested the hypothesis that mitochondrial ROS are a key mediator of MHD.

View Article and Find Full Text PDF

Background: Myocardial hypertrophy and dysfunction are key features of metabolic heart disease due to dietary excess. Metabolic heart disease manifests primarily as diastolic dysfunction but may progress to systolic dysfunction, although the mechanism is poorly understood. Liver kinase B1 (LKB1) is a key activator of AMP-activated protein kinase and possibly other signaling pathways that oppose myocardial hypertrophy and failure.

View Article and Find Full Text PDF

Background: Obesity leads to metabolic heart disease (MHD) that is associated with a pathologic increase in myocardial fatty acid (FA) uptake and impairment of mitochondrial function. The mechanism of mitochondrial dysfunction in MHD, which results in oxidant production and decreased energetics, is poorly understood but may be related to excess FAs. Determining the effects of cardiac FA excess on mitochondria can be hindered by the systemic sequelae of obesity.

View Article and Find Full Text PDF

Background: Diet-induced obesity leads to metabolic heart disease (MHD) characterized by increased oxidative stress that may cause oxidative post-translational modifications (OPTM) of cardiac mitochondrial proteins. The functional consequences of OPTM of cardiac mitochondrial proteins in MHD are unknown. Our objective was to determine whether cardiac mitochondrial dysfunction in MHD due to diet-induced obesity is associated with cysteine OPTM.

View Article and Find Full Text PDF

Myocardial fibrosis, a major pathophysiologic substrate of heart failure with preserved ejection fraction (HFPEF), is modulated by multiple pathways including the renin-angiotensin system. Direct renin inhibition is a promising anti-fibrotic therapy since it attenuates the pro-fibrotic effects of renin in addition to that of other effectors of the renin-angiotensin cascade. Here we show that the oral renin inhibitor aliskiren has direct effects on collagen metabolism in cardiac fibroblasts and prevented myocardial collagen deposition in a non-hypertrophic mouse model of myocardial fibrosis.

View Article and Find Full Text PDF

Background: A hallmark of aging of the cardiac myocyte is impaired sarcoplasmic reticulum (SR) calcium uptake and relaxation due to decreased SR calcium ATPase (SERCA) activity. We tested the hypothesis that H2O2-mediated oxidation of SERCA contributes to impaired myocyte relaxation in aging.

Methods And Results: Young (5-month-old) and senescent (21-month-old) FVB wild-type (WT) or transgenic mice with myocyte-specific overexpression of catalase were studied.

View Article and Find Full Text PDF