Water cleaning can be provided in batch mode or in continuous flow. For the latter, some kind of framework must withhold the cleaning agents from washout. Porous structures provide an ideal ratio of surface to volume for optimal access of the water to active sites and are able to facilitate rapid and efficient fluid transport to maintain a constant flow.
View Article and Find Full Text PDFIn the last decade, organic-inorganic hybrid halide perovskite materials have developed into a very large research area in photovoltaics and optoelectronics as promising light harvesters. Lead-free double perovskites have recently been investigated as an environmentally friendly alternative to the lead-containing compositions. However, lead-free organic-inorganic hybrid halide double perovskites have so far rarely been produced due to a certain complexity in their synthesis.
View Article and Find Full Text PDFA contactless technique for direct time-resolved measurements of the full dynamics of the adiabatic temperature change in electrocaloric materials is introduced. The infrared radiation emitted by the electrocaloric sample is sensitively detected with μs time resolution and mK temperature resolution. We present time-resolved measurements of the electrocaloric effect up to kHz frequencies of the driving electric field and down to small field strengths.
View Article and Find Full Text PDFHighly crystalline BiFeO(BFO), BiSmFeO(Sm-BFO) and BiFeCoO(Co-BFO) nanoparticles (NPs) were utilized as potential magnetic hyperthermia agents at two different frequencies in the radiofrequency (RF) range, and the effect of Smand Coion doping on the physical properties of the material was examined. The thermal behaviour of the as-prepared powders disclosed that the crystallization temperature of the powders is affected by the incorporation of the dopants into the BFO lattice and the Curie transition temperature is decreased upon doping. Vibrational analysis confirmed the formation of the R3c phase in all compounds through the characteristic FT-IR absorbance bands assigned to O-Fe-O bending vibration and Fe-O stretching of the octahedral FeOgroup in the perovskite, as well as through Raman spectroscopy.
View Article and Find Full Text PDFFreeze-casting consists of freezing a liquid suspension (aqueous or other), followed by sublimation of the solidified state to the gas state under reduced pressure, and subsequent sintering of the remaining scaffold to consolidate and densify the struts and walls. The structure is very porous with the pores being a replica of the solvent crystals. The technique is rather versatile and the use of a liquid solvent (water most of the time) as a pore forming agent is a strong asset.
View Article and Find Full Text PDFThis is the first comprehensive study of the impact of biodegradation on the structure, surface potential, mechanical and piezoelectric properties of poly(3-hydroxybutyrate) (PHB) scaffolds supplemented with reduced graphene oxide (rGO) as well as cell behavior under static and dynamic mechanical conditions. There is no effect of the rGO addition up to 1.0 wt% on the rate of enzymatic biodegradation of PHB scaffolds for 30 d.
View Article and Find Full Text PDFFront Bioeng Biotechnol
October 2022
Ionic engineering is exploited to substitute Bi cations in BiFeMnO NPs (BFM) with rare-earth (RE) elements (Nd, Gd, and Dy). The sol-gel synthesized RE-NPs are tested for their magnetic hyperthermia potential. RE-dopants alter the morphology of BFM NPs from elliptical to rectangular to irregular hexagonal for Nd, Gd, and Dy doping, respectively.
View Article and Find Full Text PDFThe escalated photocatalytic (PC) efficiency of the visible light absorber Ba-doped BiFeMnO (BFM) nanoparticles (NPs) as compared to BiFeO (BFO) NPs is reported for the degradation of the organic pollutants rhodamine B and methyl orange. 1 mol% Ba-doped-BFM NPs degrade both dyes within 60 and 25 minutes under UV + visible illumination, respectively. The Ba and Mn co-doping up to 5 mol% in BFO NPs increases the specific surface area, energy of d-d transitions, and PC efficiency of the BFO NPs.
View Article and Find Full Text PDFPulsed laser ablation in liquids was utilized to prepare NiFeO (NFO) and CoFeO (CFO) nanoparticles from ceramic targets. The morphology, crystallinity, composition, and particle size distribution of the colloids were investigated. We were able to identify decomposition products formed during the laser ablation process in water.
View Article and Find Full Text PDFPolymer materials are actively used in dielectric capacitors, in particular for energy storage applications. An enhancement of the stored energy density can be achieved in composites of electroactive polymers and dielectric inorganic fillers with a high dielectric permittivity. In this article, we report on the energy storage characteristics of composites of relaxor terpolymer P(VDF-TrFE-CFE) and BaZrTiO (BZT) nanoparticles.
View Article and Find Full Text PDFLead-free perovskites are attracting increasing interest as nontoxic materials for advanced optoelectronic applications. Here, we report on a family of silver/bismuth bromide double perovskites with lower dimensionality obtained by incorporating phenethylammonium (PEA) as an organic spacer, leading to the realization of two-dimensional double perovskites in the form of (PEA)AgBiBr ( = 1) and the first reported (PEA)CsAgBiBr ( = 2). In contrast to the situation prevailing in lead halide perovskites, we find a rather weak influence of electronic and dielectric confinement on the photophysics of the lead-free double perovskites, with both the 3D CsAgBiBr and the 2D = 1 and = 2 materials being dominated by strong excitonic effects.
View Article and Find Full Text PDFFerroelectric materials have gained high interest for photovoltaic applications due to their open-circuit voltage not being limited to the band gap of the material. In the past, different lead-based ferroelectric perovskite thin films such as Pb(Zr,Ti)O (Pb,La)(Zr,Ti)O and PbTiO were investigated with respect to their photovoltaic efficiency. Nevertheless, due to their high band gaps they only absorb photons in the UV spectral range.
View Article and Find Full Text PDFDomain walls and phase boundaries are fundamental ingredients of ferroelectrics and strongly influence their functional properties. Although both interfaces have been studied for decades, often only a phenomenological macroscopic understanding has been established. The recent developments in experiments and theory allow to address the relevant time and length scales and revisit nucleation, phase propagation and the coupling of domains and phase transitions.
View Article and Find Full Text PDFHighly porous yttrium oxide is fabricated as ion beam target material in order to produce radioactive ion beams via the Isotope Separation On Line (ISOL) method. Freeze casting allows the formation of an aligned pore structure in these target materials to improve the isotope release. Aqueous suspensions containing a solid loading of 10, 15, and 20 vol% were solidified with a unidirectional freeze-casting setup.
View Article and Find Full Text PDFIn recent decades, drug delivery systems (DDSs) based on nanotechnology have been attracting substantial interest in the pharmaceutical field, especially those developed based on natural polymers such as chitosan, cellulose, starch, collagen, gelatin, alginate and elastin. Nanomaterials based on chitosan (CS) or chitosan derivatives are broadly investigated as promising nanocarriers due to their biodegradability, good biocompatibility, non-toxicity, low immunogenicity, great versatility and beneficial biological effects. CS, either alone or as composites, are suitable substrates in the fabrication of different types of products like hydrogels, membranes, beads, porous foams, nanoparticles, in-situ gel, microparticles, sponges and nanofibers/scaffolds.
View Article and Find Full Text PDFThe temperature dependence of the dielectric permittivity and polarization hysteresis loops of P(VDF-TrFE-CFE) polymer films with different compositions are studied. Among them, the three compositions, 51.3/48.
View Article and Find Full Text PDFAccurate nuclear quadrupole moment values are essential as benchmarks for nuclear structure models and for the interpretation of experimentally determined nuclear quadrupole interactions in terms of electronic and molecular structure. Here, we present a novel route to such data by combining perturbed γ-γ angular correlation measurements on free small linear molecules, realized for the first time within this work, with state-of-the-art ab initio electronic structure calculations of the electric field gradient at the probe site. This approach, also feasible for a series of other cases, is applied to Hg and Cd halides, resulting in Q(^{199}Hg,5/2^{-})=+0.
View Article and Find Full Text PDFBackground: Aryl-propionic acid derivatives with ibuprofen as representative drug are very important for therapy, being recommended especially for anti-inflammatory and analgesic effects. On other hand 1,3-thiazolidine-4-one scaffold is an important heterocycle, which is associated with different biological effects such as anti-inflammatory and analgesic, antioxidant, antiviral, antiproliferative, antimicrobial etc. The present study aimed to evaluated the toxicity degree and the anti-inflammatory and analgesic effects of new 1,3-thiazolidine-4-one derivatives of ibuprofen.
View Article and Find Full Text PDFCurrently, despite the thoroughgoing scientific research carried out in the area of wound healing management, the treatment of skin injuries, regardless of etiology remains a big provocation for health care professionals. An optimal wound dressing should be nontoxic, non-adherent, non-allergenic, should also maintain a humid medium at the wound interfacing, and be easily removed without trauma. For the development of functional and bioactive dressings, they must meet different conditions such as: The ability to remove excess exudates, to allow gaseous interchange, to behave as a barrier to microbes and to external physical or chemical aggressions, and at the same time to have the capacity of promoting the process of healing by stimulating other intricate processes such as differentiation, cell adhesion, and proliferation.
View Article and Find Full Text PDF2D hybrid perovskites (2DP) are versatile materials, whose electronic and optical properties can be tuned through the nature of the organic cations (even when those are seemingly electronically inert). Here, it is demonstrated that fluorination of the organic ligands yields glassy 2DP materials featuring long-lived correlated electron-hole pairs. Such states have a marked charge-transfer character, as revealed by the persistent Stark effect in the form of a second derivative in electroabsorption.
View Article and Find Full Text PDFLaser fragmentation of colloidal submicron-sized bismuth ferrite particles was performed by irradiating a liquid jet to synthesize bismuth ferrite nanoparticles. This treatment achieved a size reduction from 450 nm to below 10 nm. A circular and an elliptical fluid jet were compared to control the energy distribution within the fluid jet and thereby the product size distribution and educt decomposition.
View Article and Find Full Text PDFThis study was dedicated to the investigation of poly(vinylidene fluoride) (PVDF) micropillar arrays obtained by soft lithography followed by phase inversion at a low temperature. Reduced graphene oxide (rGO) was incorporated into the PVDF as a nucleating filler. The piezoelectric properties of the PVDF-rGO composite micropillars were explored via piezo-response force microscopy (PFM).
View Article and Find Full Text PDFThe occurrence of the inverse (or negative) electrocaloric effect, where the isothermal application of an electric field leads to an increase in entropy and the removal of the field decreases the entropy of the system under consideration, is discussed and analyzed. Inverse electrocaloric effects have been reported to occur in several cases, for example, at transitions between ferroelectric phases with different polarization directions, in materials with certain polar defect configurations, and in antiferroelectrics. This counterintuitive relationship between entropy and applied field is intriguing and thus of general scientific interest.
View Article and Find Full Text PDFIn this study we explore the prospect of strain-mediated magnetoelectric coupling in CoFe2O4-BaTiO3 bi-layers as a function of different interfacial boundary conditions. Pulsed laser deposition fabricated thin films on Nb:SrTiO3(100) and Nb:SrTiO3(111) single crystal substrates were characterized in terms of their peculiarities related to the structure-property relationship. Despite the homogeneous phase formation in both films, transmission electron microscopy showed that the bi-layers on Nb:SrTiO3(100) exhibit a higher number of crystallographic defects when compared to the films on Nb:SrTiO3(111).
View Article and Find Full Text PDFThe electrocaloric effect (ECE) in ferroelectric materials is a promising candidate for small, effective, low cost, and environmentally friendly solid state cooling applications. Instead of the commonly used indirect estimates based on Maxwell's relations, direct measurements of the ECE are required to obtain reliable values. In this work, we report on a custom-made quasi-adiabatic calorimeter for direct ECE measurements.
View Article and Find Full Text PDF