During the high-temperature oxygen evolution reaction for CO electrolysis in solid oxide electrolysis cells (SOECs), the key elementary process of O transfer is restricted by the high anodic oxygen pressure thermodynamically, thus requiring a high external voltage [open-circuit voltage (OCV)] to drive the electrolysis reaction. Herein, electrochemical CH reforming is introduced to the SOEC anode, which remarkably lowers the anodic oxygen pressure and OCV, finally reducing the energy demand from 3.12 to 0.
View Article and Find Full Text PDFIn situ exploration of the dynamic structure evolution of catalysts plays a key role in revealing reaction mechanisms and designing efficient catalysts. In this work, PtCu/MgO catalysts, synthesized via the co-impregnation method, outperforms monometallic Pt/MgO and Cu/MgO. Utilizing quasi/in-situ characterization techniques, it is discovered that there is an obvious structural evolution over PtCu/MgO from PtCuO oxide cluster to PtCu alloy with surface CuO species under different redox and CO oxidation reaction conditions.
View Article and Find Full Text PDFThe BL17B beamline at the Shanghai Synchrotron Radiation Facility was first designed as a versatile high-throughput protein crystallography beamline and one of five beamlines affiliated to the National Facility for Protein Science in Shanghai. It was officially opened to users in July 2015. As a bending magnet beamline, BL17B has the advantages of high photon flux, brightness, energy resolution and continuous adjustable energy between 5 and 23 keV.
View Article and Find Full Text PDFSelective hydrogenation of carbon monoxide (CO) to higher alcohols (COH) is a promising non-petroleum route for producing high-value chemicals, in which precise regulations of both C-O cleavage and C-C coupling are highly essential but remain great challenges. Herein, we report that highly selective CO hydrogenation to COH is achieved over a potassium-modified edge-rich molybdenum disulfide (MoS) catalyst, which delivers a high CO conversion of 17% with a superior COH selectivity of 45.2% in hydrogenated products at 240 °C and 50 bar, outperforming previously reported non-noble metal-based catalysts under similar conditions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2023
High-entropy transition-metal oxides are potentially interesting cathode materials for lithium-ion batteries, among which high-entropy layered oxides are considered highly promising because there exist two-dimensional ion transport channels that may, in principle, enable fast ion transport. However, high-entropy layered oxides reported to date exhibit fast capacity fading in initial cycles and thus are hardly of any practical value. Here, we investigate the structural and property changes of a five-element layered oxide, LiNiCoMnFeAlO, using electrochemical and physical characterization techniques.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2023
The regulation of electron distribution of single-atomic metal sites by atomic clusters is an effective strategy to boost their intrinsic activity of oxygen reduction reaction (ORR). Herein we report the construction of single-atomic Mn sites decorated with atomic clusters by an innovative combination of post-adsorption and secondary pyrolysis. The X-ray absorption spectroscopy confirms the formation of Mn sites via Mn-N coordination bonding to FeMn atomic clusters (FeMn /Mn-N C), which has been demonstrated theoretically to be conducive to the adsorption of molecular O and the break of O-O bond during the ORR process.
View Article and Find Full Text PDFMorphology of support is of fundamental significance to the fabrication of highly efficient catalysts for CO oxidation reaction. Many methods for the construction of supports with specific morphology and structures greatly rely on controlling general physical and chemical synthesis conditions such as temperature or pH. In this paper, we report a facile route to prepare yttria nanosheet using NaCl as template to support platinum nanoparticles exhibiting higher CO oxidation activity than that of the normally prepared Pt/YO.
View Article and Find Full Text PDFContemporary thin-film photovoltaic (PV) materials contain elements that are scarce (CIGS) or regulated (CdTe and lead-based perovskites), a fact that may limit the widespread impact of these emerging PV technologies. Tin halide perovskites utilize materials less stringently regulated than the lead (Pb) employed in mainstream perovskite solar cells; however, even today's best tin-halide perovskite thin films suffer from limited carrier diffusion length and poor film morphology. We devised a synthetic route to enable in situ reaction between metallic Sn and I in dimethyl sulfoxide (DMSO), a reaction that generates a highly coordinated SnI·(DMSO) adduct that is well-dispersed in the precursor solution.
View Article and Find Full Text PDFSn-based compounds with buffer matrixes possessing high theoretical capacity, low working voltage, and alleviation of the volume expansion of Sn are ideal materials for lithium storage. However, it is challenging to confine well-dispersed Sn within a lithium active matrix because low-melting-point Sn tends to agglomerate. Here, we apply a metal-organic framework (MOF) chemistry between Sn-nodes and lithium active ligands to create two Sn-based MOFs comprising Sn(dobdc) and Sn(dobpdc) with extended ligands from Hdobdc (2,5-dioxido-1,4-benzenedicarboxylate acid) to Hdobpdc (4,4'-dioxidobiphenyl-3,3'-dicarboxylate acid) with molecule-level homodispersion of Sn in organic matrixes for lithium storage.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2020
Perturbing the electronic structure of the MoS basal plane by confining heteroatoms offers the opportunity to trigger in-plane activity for the hydrogen evolution reaction (HER). The key challenge consists of inducing the optimum HER activity by controlling the type and distribution of confined atoms. A distance synergy of MoS -confined single-atom rhodium is presented, leading to an ultra-high HER activity at the in-plane S sites adjacent to the rhodium.
View Article and Find Full Text PDF