Publications by authors named "Luoran Shang"

Hydrogel microspheres hold great promise as scaffolds for bone repair. Their hydrated matrix, biocompatibility, and functional properties make them an attractive choice in regenerative medicine. However, the irregularity of defect requires shape adaptability of the microspheres.

View Article and Find Full Text PDF

Polymer fibers are attracting increasing attention as a type of fundamental material for a wide range of products. However, to incorporate novel functionality, a crucial challenge is to simultaneously manipulate their structuring across multiple length scales. In this research, a facile and universal approach is proposed by directly drawing a pre-gel feedstock embedding a cellulose cholesteric liquid crystal (CLC).

View Article and Find Full Text PDF

This commentary underscores the importance and implications of the study "Biomolecular condensates with complex architectures via controlled nucleation," led by Jan C. M. van Hest and Tuomas P.

View Article and Find Full Text PDF
Article Synopsis
  • Droplets of one fluid in another immiscible fluid typically adopt a spherical shape due to interfacial tension, but shear forces from flow can deform them, especially when stabilized by surfactants.
  • Colloidal particles can also stabilize droplets differently, creating a solid-like interface under compression while introducing unique shape deformations during flow.
  • The study reveals that shear forces and particle migration produce various droplet shapes, influenced by the balance of shear forces and diffusion, offering a new approach to control droplet shapes in microchannels.
View Article and Find Full Text PDF

Constructing hydrogels with spatially heterogeneous structures are crucial for unlocking novel applications. To this end, selectively removing a specific portion of hydrogels by facile and intricate destructive strategies is worth exploring. Herein, a "contact-destructive" hydrogel actuator is presented, composed of a dynamic hydrogel network doped with hydrophilic polyethylene glycol (PEG).

View Article and Find Full Text PDF

With the accelerated aging tendency, osteoarthritis (OA) has become an intractable global public health challenge. Stem cells and their derivative exosome (Exo) have shown great potential in OA treatment. Research in this area tends to develop functional microcarriers for stem cell and Exo delivery to improve the therapeutic effect.

View Article and Find Full Text PDF

Microcarrier is a promising drug delivery system demonstrating significant value in treating cancers. One of the main goals is to devise microcarriers with ingenious structures and functions to achieve better therapeutic efficacy in tumors. Here, inspired by the nucleus-cytoplasm structure of cells and the material exchange reaction between them, we develop a type of biorthogonal compartmental microparticles (BCMs) from microfluidics that can separately load and sequentially release cyclooctene-modified doxorubicin prodrug (TCO-DOX) and tetrazine-modified indocyanine green (Tz-ICG) for tumor therapy.

View Article and Find Full Text PDF

Hydrogel hemostatic sponges have been recognized for its effectiveness in wound treatment due to its excellent biocompatibility, degradability, as well as multi-facet functionalities. Current research focuses on optimizing the composition and structure of the sponge to enhance its therapeutic effectiveness. Here, we propose an adhesive hydrogel made from purely natural substances extracted from okra and Panax notoginseng.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a prevalent degenerative disease that afflicts more than 250 million people worldwide, impairing their mobility and quality of life. However, conventional drug therapy is palliative. Exosomes (Exo), although with the potential to fundamentally repair cartilage, face challenges in their efficient enrichment and delivery.

View Article and Find Full Text PDF

Directional transport of liquids is of great importance in energy saving, chemical/biomedical engineering, and microfluidics applications. Despite considerable progress in engineering different open surfaces to achieve liquid manipulation, the realization of diode-like liquid transport in enclosed spaces is still challenging. Here, a flexible diode microtube is presented for directional liquid transport within confined spaces using pulsed microfluidics.

View Article and Find Full Text PDF

Chronic diabetic wounds confront a significant medical challenge because of increasing prevalence and difficult-healing circumstances. It is vital to develop multifunctional hydrogel dressings, with well-designed morphology and structure to enhance flexibility and effectiveness in wound management. To achieve these, we propose a self-healing hydrogel dressing based on structural color microspheres for wound management.

View Article and Find Full Text PDF

The hyperglycemic pathophysiological environment in diabetic wounds is a major obstacle that impedes the healing process. Glucose-responsive wound healing materials are a promising approach to address this challenge. In this study, complex coacervate-based protocells are introduced for diabetic wound healing.

View Article and Find Full Text PDF

Probiotic-based therapies have shown great potential in the prevention and treatment of many diseases by positively regulating intestinal flora homeostasis. However, the efficacy of oral probiotics is severely limited due to the loss of bioactivity, short intestinal retention time, and insufficient therapeutic effect. Here, based on droplet microfluidics, we developed a hydrogel microsphere with colonic targeting and mucoadhesive capabilities as a multifunctional delivery platform, which can be used for co-delivery of probiotics (Escherichia coli Nissle 1917, EcN) and auxiliary molecules (indole-3-propionic acid, IPA), achieving synergistic therapeutic effects.

View Article and Find Full Text PDF

Drug therapy is one of the most important strategies for treating gynecological diseases. Local drug delivery is promising for achieving optimal regional drug exposure, considering the complex anatomy and dynamic environment of the upper genital tract. Here, we present microparticle-based microcarriers with a hierarchical structure for localized dienogest (DNG) delivery and endometriosis treatment.

View Article and Find Full Text PDF

Construction of biomimetic models for structural color evolution not only gives new photonic phenomena but also provide cues for biological morphogenesis. Here, a novel confined self-assembly method is proposed for the generation of hydroxypropyl cellulose (HPC)-based cholesteric liquid crystals (CLCs) microbubbles. The assembly process relies on the combination of droplet microfluidics, solvent extraction, and a volume confined environment.

View Article and Find Full Text PDF

Localized chemotherapy is emerging as a potential strategy for cancer treatment due to its low systemic toxicity. However, the immune evasion of tumor cells and the lack of an intelligent design of the delivery system limit its clinical application. Herein, photothermal responsive microcarriers are designed by microfluidic electrospray for colorectal tumor treatment.

View Article and Find Full Text PDF

Stem cell-based therapies have exhibited significant promise in the treatment of diabetic ulcers (DU). Nevertheless, enhancing the survival rate and functionality of transplanted stem cells poses a substantial challenge. In this study, inspired by the breadmaking process, yeast microcarriers (YMC) are devised as vehicles for stem cells to address these challenges.

View Article and Find Full Text PDF

Metal-organic framework (MOF)-based drug delivery systems have demonstrated values in oncotherapy. Current research endeavors are centralized on the functionality enrichment of featured MOF materials with designed versatility for synergistic multimodal treatments. Here, inspired by the multifarious biological functions including ferroptosis pattern, porphyrins, and cancer cell membrane (CCM) camouflage technique, novel multi-biomimetic MOF nanocarriers from microfluidics are prepared.

View Article and Find Full Text PDF

As a kind of intestinal flora regulator, probiotics show great potential in the treatment of many diseases. However, orally delivered probiotics are often vulnerable to unfriendly gastrointestinal environments, resulting in a low survival rate and decreased therapeutic efficacy. Decorating or encapsulating probiotics with functional biomaterials has become a facile yet useful strategy, and probiotics can be given different functions by wearing different armors.

View Article and Find Full Text PDF

Many hydrogel patches are developed to solve the pervasive and severe challenge of complex wound healing, while most of them still lack satisfactory controllability and comprehensive functionality. Herein, inspired by multiple creatures, including octopuses and snails, a novel muti-functional hydrogel patch is presented with controlled adhesion, antibacterial, drug release features, and multiple monitoring functions for intelligent wound healing management. The patch with micro suction-cup actuator array and a tensile backing layer is composed of tannin grafted gelatin, Ag-tannin nanoparticles, polyacrylamide (PAAm) and poly(N-isopropylacrylamide) (PNIPAm).

View Article and Find Full Text PDF

Prevention of recurrence/metastasis and tissue regeneration are critical for post-surgery treatment of malignant tumors. Here, to address these needs, a novel type of microgel co-loading cryo-shocked cancer cells, immunoadjuvant, and immune checkpoint inhibitor is presented by microfluidic electrospray technology and liquid nitrogen treatment. Owing to the encapsulation of cryo-shocked cancer cells and immunoadjuvant, the microgels can recruit dendritic cells and activate them , and evoke a robust immune response.

View Article and Find Full Text PDF

Nitric oxide (NO) has shown great potential in tumor therapy, and the development of a platform for precise and controllable NO release still needs to be explored. Herein, a microfluidic electrospray strategy is proposed for the fabrication of hydrogel microspheres encapsulating NO donors (S-nitrosoglutathione, GSNO) together with black phosphorus (BP) and chemotherapeutic doxorubicin (DOX) as microcarriers for tumor therapy. Based on the excellent photothermal property of BP and thermal sensitivity of GSNO, the microcarriers exhibit a near-infrared light (NIR)-responsive NO release behavior.

View Article and Find Full Text PDF

Liquid crystal is a state of matter being intermediate between solid and liquid. Liquid crystal materials exhibit both orientational order and fluidity. While liquid crystals have long been highly recognized in the display industry, in recent decades, liquid crystals provide new opportunities into the cross-field of material science and biomedicine due to their biocompatibility, multifunctionality, and responsiveness.

View Article and Find Full Text PDF